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Abstract 

This thesis proposes a JavaScript software transactional memory (jSTM) 

system only using features of HTML5. As web applications become widely 

used because of high portability, web applications become more 

complicated. To increase the processing speed of these applications, 

HTML5 supports web workers for JavaScript parallelization. However, the 

web worker is not perfectly suitable for parallelization because web 

workers do access the same memory address. In this reason, several 

JavaScript parallelization systems introduce transactional memory systems, 

but these systems need to install additional components. In contrast, with 

the jSTM, programmers can parallelize web applications easier than lock-

based systems without installing additional components. This thesis 

implemented the prototype of jSTM system, and analyzed the overhead to 

improve the system. 
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I. Introduction  

As web applications become widely used, portability across various 

platforms also becomes important. Moreover, programmers can implement 

more complicated application using only HyperText Markup Language (HTML), 

JavaScript, and Cascading Style Sheets. High performance is one of the main 

factors for using applications, but applications cannot guarantee the high 

performance as these become complicated. As a result, performance 

improvement for web applications becomes important. One of the possible 

performance optimization methods is parallelization because parallelized 

applications can utilize multi-core CPUs more effectively. For this reason, 

HTML5 supports a web worker [1] for the JavaScript parallelization. 

The web worker is a JavaScript thread that runs in the background with a 

main HTML page. Because the main page can execute several workers, 

applications can use web workers for performing works in parallel. However, 

the web worker supports a limited parallelization because each web worker 

uses its own contents and does not share these contents with other workers. 

Threads for executing the parallelized application need to share the memory 

because several threads can access same memory address at the same time, 

so the web worker is not perfectly suitable for parallelization. For this reason, 

the parallelization system needs to introduce a shared memory system such 

as a lock-based or a transactional memory mechanism. However, the lock-

based system is difficult to use and error-prone, so parallelization systems 

introduce the transactional memory system for ensuring correctness of 

parallelized applications more easily than lock-based systems. 

In addition, several JavaScript parallelization systems such as TigerQuoll [2] 

or ParaScript [3] introduce the transactional memory system. However, these 

systems need additional components for parallelizing such as Mozilla 

SpiderMonkey [4] for TigerQuoll or TraceMonkey [5] engine for ParaScript [3]. 
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In this reason, these systems have a limited portability. 

Meanwhile, previous JavaScript parallelization systems introduce various 

parallelization methods such as DOALL. These systems can increase the 

performance of applications but parallelizes loops limitedly if dependencies 

exist between loops. To solve this problem, some JavaScript parallelization 

systems use speculative parallelization methods. For example, ParaScript [3] 

utilizes the Spec-DOALL method for parallelizing applications speculatively 

with the DOALL method. These speculative parallelization systems can 

parallelize more kinds of applications than non-speculative methods because 

speculative methods can remove some instructions speculatively if these 

instructions have dependencies and low probability of execution. 

This thesis proposes a software transactional memory system for JavaScript 

(jSTM) only using features of HTML5. This system aims that programmers can 

parallelize applications easily with less limitation unlike the current web worker. 

For this, this thesis implemented the JavaScript parallelization API using the 

transactional memory. After defining the unit of works and read & written 

variables using the API, applications can be parallelized. 

Contributions of this paper are as follows: 

 

(1) Introducing the transactional memory, programmers can easily 

parallelize applications speculatively without using a lock-based system. 

(2) Without installing additional components, parallelization is available in 

most browsers. 

 

The remainder of this paper consists of as follows. Section 2 describes the 

background for the JavaScript speculative parallelization and the transactional 

memory. Section 3 explains about the design of the system and what features 

need to be implemented. Section 4 shows the evaluation for the processing 

speed of some benchmarks using parallelization comparing with the 
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processing speed before parallelization. Section 5 compares our system with 

other parallelization systems, and finally, Section 6 concludes the paper. 
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II. Background 

2.1. Parallelization 

Controlling the frequency of a CPU core has a limited impact on increasing 

the processing speed because of the memory wall, the ILP wall, and the 

power wall. For this reason, CPU manufactures choose a multi-core design for 

improving the performance. For utilizing the multi-core system effectively, 

using multiple cores simultaneously is necessary. However, programmers 

previously did not implemented applications with a consideration for parallel 

programming. As a result, several parallelization methods are suggested such 

as DOALL for parallelizing these applications. 

With the DOALL method, threads execute iterations independently and 

simultaneously. Figure 1 shows an example for DOALL parallelization. 

Because an instruction B uses the value of nodeIdx that is from an instruction 

A, the instruction B has data dependency on the instruction A (Figure 1b). 

Data dependency exists in the iteration, but any dependency between 

iterations does not exist. In this case, DOALL can parallelize loops. As a result, 

each CPU core executes iterations simultaneously (Figure 1d). With DOALL, 

CPU cores do not need to communicate with each other because CPU cores 

execute iterations independently, so the overhead for parallelization is low. 

However, DOALL cannot parallelize loops if dependencies exist between 

iterations. 

To mitigate this limitation, speculative parallelization methods such as Spec-

DOALL [6] are suggested. Using analyzed data (e.g., as profiling information), 

these methods remove dependencies speculatively for increasing the chance 

to parallelize. 
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Figure 1. Example for DOALL. (a): Example source code, (b): Program dependence 

graph of (a), (c): Diagram of each instruction executed in CPUs before parallelization, 

and (d): Diagram of each instruction executed in CPUs after using DOALL method. 

 
Figure 2. Example for Spec-DOALL. (a): Example source code, (b): Program 

dependence graph of (a), (c): Diagram of each instruction executed in CPUs after 

using Spec-DOALL.  

 

Spec-DOALL removes dependencies between iterations if these 

dependencies have a little chance to occur. After removing dependencies, the 

Spec-DOALL method can parallelize loops using the DOALL method. Figure 2 
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shows an example for applying Spec-DOALL parallelization. Originally, DOALL 

cannot parallelize a loop in Figure 2a because of control dependency that 

exists on instruction D. However, Spec-DOALL can remove these 

dependencies like Figure 2b if instruction C and D have little chance of 

execution. After this removing process, Spec-DOALL parallelizes the loop like 

Figure 2c. If speculations are wrong in some iterations, the Spec-DOALL 

system recovers statuses before executing the misspeculated iteration and 

executes the original iteration. This recovering process causes the additional 

overhead. 

 

2.2. Transactional memory system 

Using parallelization, threads need to access the same memory address. To 

ensure the correct result of the parallelized program, synchronization between 

threads is necessary. For this reason, several synchronization methods are 

suggested such as using the lock-based synchronization. However, the lock-

based synchronization is hard to use and error-prone method because 

programmers must use the lock with considering that errors such as deadlock 

do not occur. To solve this problem of the lock-based system, a transactional 

memory (TM) is introduced. 

A transaction is a sequence of atomic instructions, so a thread executes all 

instructions from the transaction or does not execute them at all. After 

committing written values in a transaction, other transactions can use these 

changed values. On the other hand, when conflicts occur with other 

transactions, so that an instruction in the transaction accesses the wrong 

value of memory, other transactions must not use changed values by this 

transaction. In this case, the TM system discards all written values from the 

transaction that has conflicts. Using this mechanism, multiple threads can 

access the same memory address safely. 
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To manage TMs, the system selects between several mechanisms. The TM 

system needs to decide when the system checks conflicts between 

transactions and decide when the system applies changes of values from 

write operations. Section 2.2.1 and Section 2.2.2 describes mechanisms for 

each. 

 

2.2.1. Eager conflict detection and Lazy conflict detection 

The TM system detects conflicts for each memory access or at the end of 

each transaction. A mechanism for the former is the eager conflict detection 

and for the latter is the lazy conflict detection. With the eager conflict detection, 

the TM system checks conflicts for each memory access in a transaction 

because read and write operations from the transaction are visible to other 

transactions. On the other hand, with the lazy conflict detection, the TM 

system checks conflicts between a transaction and already committed 

transactions. 

The eager conflict detection is not effective for the jSTM because the jSTM 

system utilizes the web worker and web workers do not share their own 

contents such as memory access records. In this reason, jSTM uses the lazy 

conflict detection. 

 

2.2.2. Undo log and Redo log 

To commit or to abort written values in transactions, the TM system uses an 

undo log or a redo log. Using the undo log, write operations in a transaction 

directly changes the value that stored in the memory. In addition, the TM 

system makes an undo log for recovering changed values when a conflict 

occurs. 

On the other hands, write operations in a transaction do not directly 

changes the value when the system uses the redo log. Instead, the system 

records values and memory addresses that write operations aim to change. 
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Each transaction records access for read operations in a read set and for write 

operations in a write set. When comparing access records from the read and 

the write set, so that any conflict does not occur in the transaction, the system 

applies value changes using the redo log during the commit process. The 

jSTM system uses the redo log with the lazy conflict detection. 

 

2.3. JavaScript Parallelization 

To implementing the TM system, the commit unit and the recovering process 

for solving conflicts are necessary. Previously, several papers such as [7, 8, 9] 

implement the software transactional memory system (STM) using C or C++ 

language. However, C language and JavaScript language have difference 

structures, so the jSTM system needs to consider that. Table 1 shows the 

main difference between C and JavaScript language for implementing the TM 

system. First, JavaScript is the event-based language, so JavaScript is difficult 

to use synchronization basically because the event-listener operates 

asynchronously after the event occurs. Moreover, each worker does not share 

the same memory area. In this reason, the JavaScript-based system is difficult 

to introduce the lock-based STM like [7, 10] without modifying the JavaScript 

engine. Moreover, unlike that C language can access variables in the low-level 

with the memory address, JavaScript language can only access variables as 

the object. In this reason, the copying process for recovering uses the deep-

copy mechanism in JavaScript. That is, the copying process copies all values 

of attributes for all objects. Section 3 describes details about how the jSTM 

solves these problems. 

 

Table 1. The main difference between C and JavaScript for Spec-DSWP 

 C JavaScript 

Synchronization Available Not available 

The way to access memory Using the pointer Using the object 
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III. Design and Implementation 

This thesis implemented the STM system and the speculative parallelization 

API using JavaScript language. This system aims to provide parallelization 

easily without any additional installing modules, so the jSTM system only uses 

features of HTML5. Meanwhile, as describing in Section 2.3, this system 

needs to apply the difference between C and JavaScript to introduce the STM 

system in JavaScript. Section 3.1 and 3.2 describes how this thesis 

implements the system considering these differences: Section 3.1 describes 

how this thesis implements the commit process without the lock, and Section 

3.2 explains how this thesis implements the recovering process using the 

deep-copy mechanism. Section 3.3 describes the architecture of the 

parallelization system using the transactional memory and the mechanism for 

parallelizing with the API. 

 

3.1. Committing process 

The jSTM system introduces the separated validation and committing 

process. Because each worker thread (i.e., threads that execute parallelized 

loop) uses separated memory area, a worker thread cannot validate its 

records of memory accesses nor cannot commit for other worker threads to 

use changed values. For this reason, the jSTM system separates the 

committing process from worker threads. The committer gets speculative 

records from worker threads, and validates and commits records. As a result, 

all worker threads share memory states of the committer. 

In addition, the system uses an in-order commit to guarantee the 

correctness of the execution result. Figure 3 shows how transactions in worker 

threads and the committer work using the in-order commit. Each CPU core 

has an identifier (ID) and each transaction also has an ID, so CPU cores only 

execute transactions that have the same ID as theirs. For example, 
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Figure 3 Example for the in-order commit process. (a): transactions that executed or 

not by CPU core 1, (b): figure for how workers and committer works; gray one is 

empty transaction. Each transaction from core 1-3 communicates with the core 4 for 

the committing process. 

in Figure 3a, Core 1 that has an ID 0 only executes the transactions that have 

an ID 0. Otherwise, Core 1 does not execute instructions of other transactions, 

so Core 1 executes these transactions as empty transactions. After worker 

threads send records of memory access to the committer, the committer store 

these records. If the committer gets at least one memory-access record from 

each CPU cores and the committer did not validate and commit these records 

yet, the committer starts to validate these records. As the result, though all 

CPU cores execute each transaction independently, the committer validates 

and commits transactions as same order as the original sequential program. 

 

3.2. Backup process using deep copy for global variables 

The jSTM system uses the deep-copy mechanism for making checkpoints 

of global variables. JavaScript is the object-oriented language, so JavaScript 

accesses variables as the unit of object. Because JavaScript does not use a 
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pointer like C language, the jSTM system cannot access the memory in the 

low-level. For this reason, the jSTM system copies the name and all property 

of objects using the Object.keys() method. 

The Obejct.keys() method returns properties of objects as an array of string 

values, so worker threads make a checkpoint of global variables utilizing this 

method for the recovering process. Figure 4 shows an algorithm for making 

checkpoints of global variables automatically. First, using the Object.keys() 

method, a worker thread gets all names of global variables from its memory 

area. In this case, the worker thread removes properties not defined by a 

programmer to reduce the overhead for copying (Figure 4a: line 2-3). Then, 

the makeCheckPoints function checks the type of each global variable. If a 

global variable is an object type, this function makes copies of all properties of 

objects using the copyContents function (Figure 4a: line 5-6). Otherwise, this 

function makes copies of value of the global variable (Figure 4a: line 7-8). 

The copyContents function performs differently for array type objects and 

other objects. For arrays, the copyContents copies all contents of array 

(Figure 4b: line 3 7). Otherwise, the copyContents copies both a prototype and 

properties of objects (Figure 4b: line 8-12). To check and copy all properties of 

objects, the copyContents check recursively if type of each property is object. 

When misspeculation occurs, the worker thread recovers all global objects 

defined by the programmer using copied values of objects. However, this 

method cannot make a copy of local variables because local variables are not 

accessible programmatically with this method. Instead, the programmer can 

make the copy of local variables using the parallelization API. 
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Figure 4 Algorithms for making checkpoints. Function (a) uses the function (b) for 

copying all properties of objects. 
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Figure 5. Architecture of the parallelization system 

 

3.3. Implementation 

3.3.1. The architecture of the parallelization system 

Figure 5 shows the architecture of the parallelization system using jSTM. 

This system has two kinds of threads: the main thread and worker threads. 

The main thread executes the main HTML page and worker threads are web 

workers for parallelized works. The main thread and each worker thread are 

connected bi-directional, so the main thread sends variables for initializing at 

the beginning and the copy of variables after misspeculation occurs to worker 

threads. In addition, the main thread receives records of speculatively access 

for validating and copies of variables for preparing the recovering process 

from worker threads. 

The main thread consists of the worker initializer, the validator, and the 

committer. The worker initializer initializes worker threads, and the validator 

and the committer checks conflicts and commits speculative writes. Actually, 

the main thread executes the validator and the committer together if worker 

threads send values. Figure 6 shows an algorithm of validating and committing. 

First, the validator checks whether or not conflicts exist in each iteration:  
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Figure 6 Algorithm for the validator and the committer 

If an iteration read speculatively a wrong value, the validator considers that 

conflict exists in this transaction. The comparison target can be a previous-

committed value (Figure 6: line 7-14), or an uncommitted value from previous 

iterations (Figure 6: line 15-18). After validating, the committer applies 

changed values to the memory if conflict does not exist (Figure 6: line 21-23). 

If conflict exists in the iteration, the main thread discards all record of 
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speculative writes and terminates all of currently running worker threads. Then, 

the main thread executes the misspeculated iteration without speculation and 

reinitializes worker threads for restarting later iterations (Figure 6: line 23-26). 

These workers will execute the recovery process before executing later 

iterations. 

 

3.3.2. API for parallelization 

This thesis implemented the Parallelization API to the JavaScript library. 

Programmers can use this parallelization API by adding the implemented 

JavaScript library without any changes of the web browser: Programmers use 

the API for initialization and execution threads in the main thread and use for 

defining and using MTXs in worker threads. Table 2 shows components of the 

API that users can use for parallelization. 

The overall execution flow of the main thread and worker threads is 

described as follows: When the main thread executes executeTx after 

executing createChannels for initializing, executeTx function triggers for the 

worker threads to start executing. After receiving data from the main thread, 

worker threads start to execute their transaction. First, worker threads call 

txBeginInvocation at the starting point of a loop. txBeginInvocation recovers 

the memory state if conflicts occurred from previous iterations. Then, worker 

threads call txBegin at the beginning of iteration. This function makes a copy 

of global variables for the recovering process. On the other hand, txCopy 

makes a copy of local variables if the programmer wants to backup. During the 

transaction, txRead records read operations for making the read set and 

txWrite records write operations for the write set. When worker threads call 

txEnd at the end of iteration, threads send their read & write records for 

validating and the copy of variables to the main thread. To reduce the 

communication overhead, txEnd sends the copy selectively when the value of 

variable changed in the transaction. At the end of the loop, txEndInvocation 
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Table 2. API for speculative parallelization 

For the main thread 

createChannels 
This is for initializing worker threads. This function creates and 
initializes web workers. 

executeTX With given arguments, let worker threads start transactions. 

For worker threads 

getThreadNum 
getMyThreadID 

These functions are for executing iterations selectively. 
getThreadNum returns the number of worker threads, and 
getMyThreadID returns the ID of the worker thread. 

txBeginInvocation 
It indicates the starting point of a loop. 
If conflicts occurred in the worker thread previously, memory-
state recovering function will be executed. 

txBegin 

It indicates the starting point of loop iteration. If conflicts did not 
occur previously, this function makes copy of global variables to 
the main thread for preparing the recovering process when 
conflict occurs later. 

txWrite 
This is for the write operation. This function saves names and 
values of written variables for the write set. 

txRead 
This is for the read operation. This function saves names and 
values of read variables for the read set. 

txCopy 

This function is for making copy of local variables. The 
recovering process will use copies after misspeculation occurs. 
If misspeculation occurred before, this function returns the 
copied value. 

txEnd 
It indicates the end point of loop iteration. This function sends 
copies of variables only if these are modified and send the 
records of speculatively access. 

txEndInvocation It indicates the end point of a loop 
 

triggers for the main thread to stop validating. Figure 8 shows the example of 

speculative parallelization using these functions. This example parallelizes the 

source code of Figure 2a. Each transaction executes the iteration as if 

node[idx] has a specific value, so misspeculation occurs if some iteration 

reads empty node[idx]. 

 

3.3.3. Execution model 

Using the parallelization API, the parallelized loop consists of the prologue, 

the loop, and the epilogue. In addition, the loop consists of several iterations. 

Figure 7a shows the execution model of the parallelized loop. After the main 

thread triggers for the worker threads to start executing, each worker thread 
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Figure 7 (a): Execution model of parallelized loop for each worker thread, (b): 

example source code for initializing the worker thread from Figure 8. 

executes the prologue function at first. After that, worker threads start to 

execute the loop. After executing iterations in the loop, the main thread 

executes the interlude function after committing if misspeculation does not 

exist. Finally, worker threads terminate after executing all iterations of the loop, 

the main thread executes the epilogue function. 

The main thread has codes of interludes and the epilogue, and worker 

threads have codes of the prologue and the loop. When the programmer uses 

createChannels for initializing the worker thread, the programmer must specify 

functions for the prologue, interludes, and the epilogue like Figure 7b that is 

the part from the source code of Figure 8. For this example, the prologue 

function is beforeGetInfo, the interludes function is afterGetInfo, and the 

epilogue function is afterPll function. 
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Figure 8. Example of parallelization using the parallelization API. This example 

parallelizes the source code of Fig. 2a. 
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Table 3. Ratio of execution time for time-consuming function and ideal speedup for 

parallelized benchmarks. Ideal speedup is calculated using Amdahl's law. 

benchmark Description
1
 Ratio [%] 

Ideal speedup 

4 threads 8 threads 

2mm Multiplication two arrays 99.84 3.98 7.91 

3mm Multiplication three arrays 99.84 3.98 7.91 

covariance Computing covariance 99.91 3.99 7.95 

doitgen Multi-resolution analysis kernel 99.61 3.95 7.79 

dynprog Dynamic programming 99.99 4.00 8.00 

gemm Matrix multiplication 99.91 3.99 7.95 
 

IV. Evaluation 

This thesis implemented the prototype of the jSTM system. To evaluate the 

performance of the jSTM system, evaluated and compared execution times of 

between the original and the parallelized source code of benchmarks. 

Moreover, to improve the jSTM system, this thesis also analyzed the overhead 

of the system for each benchmark. 

For evaluation, this thesis utilized the polybench benchmark set [11]. 

Originally, the polybench benchmark set has total 30 benchmarks, but this 

thesis parallelized 6 benchmarks using DOALL method with the parallelization 

API2. This thesis used 16 GB RAM and 3.40GHz Intel® Core™ i7-4770 

machine that has 8 cores. In addition, this thesis executed benchmarks using 

Google Chrome 39.0 version. 

 

4.1. Evaluation results 

This thesis parallelized 6 benchmarks in Table 3 and executed using 4 

threads and 8 threads for evaluation. Figure 9 shows speedup of parallelized 

benchmarks using 4 threads (Figure 9a) and 8 threads (Figure 9b). Multiple 

threads could execute parallelized loop simultaneously using the 

                                           
1
 Description is from [11]. 

2
 Because the original source codes are implemented using the C language, this 

thesis ported source codes to the JavaScript version. 
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Figure 9. Speedup of parallelized benchmarks using 4 threads (a) and 8 threads (b) 

parallelization API, but speedup of each benchmark was less than the ideal 

speedup because of the overhead of the prototype jSTM system: The average 

speedup using 4 threads was 1.07 and the average speedup with 8 threads 

was 1.17. Especially, the overhead sharply increased when using 8 threads. 
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4.2. Overhead analysis 

Because the overhead of the prototype system was bigger than ideal 

execution time, so this thesis evaluated and analyzed the overhead to improve 

the system. When the programmer uses the DOALL method, main factors of 

the overhead are as follows: 

 

- Initialization overhead: Initialization overhead occurs when the main 

thread initializes worker threads and sends arguments to them. This 

overhead contains the communication overhead. 

 

- Overhead of txWrite: txWrite saves all record of memory access for 

writing. The overhead becomes large if many writing operations exist in 

a transaction. 

 

- Overhead of txEnd: txEnd sends the record of write operations, so this 

function includes the communication overhead. If a size of record 

becomes larger, the overhead of this function also becomes larger. 

 

- Overhead of txEndInvocation: txEndInvocation notifies that a worker 

thread finished executing the parallelized loop to the main thread. This 

overhead also contains the communication overhead. 

 

- Overhead of the committing process: The committer receives records 

of write operations from workers and applies them to the main memory. 

This overhead becomes larger when the size of records becomes larger. 

 

- Overhead of synchronization: Because the main thread does not send 

arguments to all worker threads simultaneously, worker threads do not 

start to execute instructions at the same time. In this reason, the main 

thread needs to wait for all worker threads to finish executing 

instructions. 
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Figure 10. Ratio of overhead for each parallelized benchmark using 4 threads (a) and 

8 threads (b). 
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Table 4. Size of sending data for each worker thread and ratio of communication 

overhead to initialization overhead. 

Benchmarks Data size [Byte] 

Ratio [%] 

4 threads 8 threads 

2mm 32000048 95.93 99.52 

3mm 32000064 98.52 99.04 

covariance 64000040 98.35 99.99 

doitgen 216002724 99.99 99.99 

dynprog 160016 96.03 99.99 

gemm 96000040 99.88 98.93 
 

Figure 10 shows the ratio of each main factor for parallelized benchmarks. 

Especially, the overhead for initialization and the overhead of txEnd occupy 

high proportion, so this thesis analyzes and describes about these two 

overheads. 

 

4.2.1. The initialization overhead 

The initialization overhead that is from createChannels and executeTX 

function mainly affected the overall performance in the case of 2mm, 3mm, 

doitgen, and gemm benchmarks. Because these benchmarks used the large 

array objects for calculating as Table 4 shows, executeTX function needed to 

send the big data. In this case, the initialization overhead became bigger when 

the size of array objects became bigger. For example, the executeTX function 

at the line 13 in Figure 11 sent arguments and A, C4 and sum were array-type 

variables. Especially, A and sum were three-dimensional arrays, so the 

overhead for communicating between the main thread and each worker thread 

increased as the size of arrays became bigger. 

Moreover, because the jSTM system uses one main thread, the main thread 

sends arguments to only one worker thread at once. In this reason, the 

number of threads also strongly influenced the initialization overhead: the 

overhead when using 8 threads was larger than using 4 threads for the most 

case of benchmarks. 
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Figure 11. Part of source code for initializing and executing worker threads of doitgen  

 

4.2.2. The overhead of txEnd 

The overhead of txEnd function mainly affected in the case of covariance 

and dynprog benchmarks. Especially, as Table 5 shows, the overhead of 

txEnd function increased when the total size of the record of write operations 

became bigger. 

In the case of covariance, the size of the record for write operations affected 

the overhead of txEnd. Figure 12 shows each iteration in parallelized loops 

from the kernel_covariance function and the kernel_covariance1 function. In 

these functions, txWrite functions (Figure 12: line 17, 21 / line 42, 45) made 

the record of write operations. In this case, the size of records became bigger 

as the number of iterations in the kernel_covariance function and the 

kernel_covaraince1 function increased. As the result, txEnd function must 

send the large size of records, so the communication overhead also increased. 
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Table 5. Data size per each transaction and the number of transactions for each 

worker threads. This thesis divided the time-consuming function of 3mm and 

covariance into two parts and parallelized them. In the case of covariance, the data 

size and the number of transactions are different between two parts, so this thesis 

writes both data. 

Benchmarks Data size [Byte] 

Number of transactions 

4 threads 8 threads 

2mm 8000 4000 8000 

3mm 8000 12000 24000 

covariance 

16008 8000 16000 

16n 

(1≤ n ≤2000, n: iterator) 
8000 16000 

doitgen 2400 1200 2400 

dynprog 8 400000 800000 

gemm 16000 8000 16000 
 

In addition, in the case of dynprog, because many transactions from several 

threads sent records of write operations but the main thread could execute the 

commit process for the record from one transaction at once. In this reason, the 

proportion of overhead of txEnd of dynprog was high though data size of 

iterations was relatively small comparing to other benchmarks. 

 

As a result, communication overhead mainly affected the overall 

performance in the case of the initialization overhead and the overhead of 

txEnd. In this reason, a method for decreasing the communication overhead 

with other threads is necessary.  
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Figure 12. Part of source code for worker threads of covariance. 
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V. Related work 

Because using the lock for parallelization is difficult and error-prone for 

programmers, previous researches implements TM systems using various 

mechanisms. Especially, this thesis introduces several STM systems: McRT-

STM system and TL2 algorithm. 

A Multi-core runtime software transactional memory system (McRT-STM) [7] 

is the lock-based STM system that operates on an experimental runtime 

system. The McRT-STM system implements transactions by using the strict 

two-phase locking protocol instead of the non-blocking protocol. With 

evaluating the performance of several alternatives of STM designs, this 

system selects to use the read-versioning mechanism with writer lock and the 

undo-log mechanism. In addition, this STM supports both the per-object and 

the per-cache-line conflict detection, but this paper shows the performance of 

benchmarks using the cache-line based conflict detection mechanism for 

focusing to the high performance. Actually, when using benchmarks, the 

McRT-STM system is faster than lock-based systems. However, the McRT-

STM is not faster evidently than the lock-based system when using the real 

application.  

A Transactional locking II (TL2) algorithm [10] is a STM algorithm which 

uses a global version clock. Write transactions increase a value of the global 

version clock for managing a version number, and transactions read this value 

for validating a read-set. The TL2 algorithm supports the write-lock per object 

for C or C++ and per stripe for Java, but an efficient memory management 

mechanism does not exist for C and C++ in [10]. In this reason, this paper 

implements the TL2 algorithm using the Java language. With adding the TL2 

algorithm manually, performance of a parallelized benchmark is faster than 

using a single mutex lock. However, this paper only evaluates performance of 

the red-black tree benchmark, so other types of benchmarks can have 



- 29 - 

different aspects of performance with evaluated data. 

To increase the speed of JavaScript applications, several researches 

developed JavaScript parallelization systems. For considering that multiple 

threads access the same memory address, these researches introduce 

various methods. For example, this thesis explains about DOHA that uses 

data-communication API and River Trail that supports immutable access. 

DOHA [12] is the JavaScript parallelization system that utilizes the web 

worker. This system consists of event-loop and MultiProc that manages states 

and schedules events for load-balancing. Because the original web worker 

does not use share memory, DOHA uses a publish-subscribe based 

communication API and RPC events to share states. However, with this 

publish-subscribe API, workers use copied states and all of these copies need 

to be synchronized when one of workers updates copied states. As a result, 

the communication overhead is high because all of workers must update 

shared states when the public-subscribe layer sends the message for 

updating states. 

River Trail [13] supports a programming model and a data-parallel API with 

a newly defined data type for JavaScript parallelization. This system cutilizes 

GPUs for parallelization, so parallelized applications gains high performance. 

For access the same memory address between multiple threads, River Trail 

introduces the immutable access. That is, child threads cannot change global 

states of a parent thread and the parent thread can change local states after 

all child threads finish their works. Meanwhile, the River Trail system uses the 

modified SpiderMonkey [4] that is a JavaScript engine in FireFox. This system 

also uses a compiler for porting JavaScript language to OpenCL [14], so 

GPUs execute the parallelized application using the OpenCL binding for 

FireFox. In [13], the River Trail system is implemented only in FireFox, so the 

evaluation process also utilizes FireFox. That is, this system can operates in 
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only limited environment. 

In addition, some JavaScript parallelization system utilizes the transactional 

memory system to support memory access for multiple threads. For example, 

TigerQuoll and ParaScript utilize the STM system.  

TigerQuoll [2] consists of the event-based API and the runtime system for 

JavaScript parallelization. This system provides the mutable shared memory 

space, so workers can communicate with each other. TigerQuoll adopts the 

transactional memory system for parallelization system. Similar to the TL2 

STM, TigerQuoll uses the lock-based transactional memory that uses the 

global versioning clock, but differently from the TL2 STM, TigerQuoll provides 

the write-lock per field. Using the version number, TigerQuoll validates the 

read set and the write set. 

ParaScript [3] supports automatic speculative DOALL. For supporting 

speculative parallelization automatically, ParaScript firstly selects hot loop, and 

then, the parallel-code generator generates parallelized bytecodes. ParaScript 

utilizes the STM system for parallelization, but not fully utilize the STM system 

for reducing the overhead. Instead, ParaScript checks conflicts of object 

arrays using the reference counting mechanism and the range-based 

checking mechanism for each memory access. If the system detects a conflict, 

the recovering process recovers a stack pointer and a frame pointer to start 

execution at checkpointed location. 

Unlike DOHA and River Trail, TigerQuoll and ParaScript utilizes the 

transactional memory system, so this system can access the same memory 

address more effectively than DOHA or River Trail. However, both TigerQuoll 

and ParaScript need additional modified JavaScript engine for using the TM 

system. To increase portability, jSTM implements the STM system only using 

HTML5 features such as the web worker. 
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VI. Conclusion 

This thesis designed the software transactional memory (STM) system and 

the parallelization API to make programmers parallelize applications easier. 

Especially, this thesis aims to increase portability, so the system only utilized 

features of HTML5. This thesis implemented the prototype of STM system and 

the parallelization API as JavaScript libraries, so programmers can parallelize 

applications with these libraries in most browsers. However, because of the 

communication overhead, the prototype of the system had the large overhead. 

In this reason, this system needs the method for reducing communication 

overheads additionally as future work. 
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요  약  문 

 

 

 

 

 

다양한 환경에서 실행 가능하다는 장점 때문에, 웹 어플리케이션의 

사용량은 점차 늘고 있으며, 그와 동시에 크고 복잡한 규모의 웹 

어플리케이션의 수도 늘어나고 있다. 그런데, 프로그램이 복잡해지면 

복잡해질수록 구동 속도는 점점 느려지기 때문에 이들을 빠른 속도로 

구동하기 위해서 여러 가지 방법을 사용할 수 있으며, 병렬화도 그 방법들 

중 하나이다.  

병렬화를 사용하면 여러 개의 CPU 코어를 동시에 활용할 수 있어 

프로그램의 구동 속도를 높일 수 있다는 장점이 있다. 그렇기 때문에 

HTML5 에서도 자바스크립트 파일을 병렬화하여 실행할 수 있도록 웹 

워커(Web worker)를 지원하고 있으나, 웹 워커는 서로 독립적인 메모리 

영역을 사용하고 있기 때문에 워커들 간 메모리 값을 공유하는 것이 

비효율적이라는 문제점이 존재한다. 

이러한 문제를 해결하기 위해 이전에 자바스크립트 엔진 내부를 

변형하여 자바스크립트 코드를 병렬화할 수 있도록 하는 병렬화 

시스템들이 제시되었다. 스레드(thread) 간 메모리 공유를 꾀하는 방법들 

중 하나로 내부적으로 락(lock)을 사용할 수 있도록 구현하는 방법이 

있는데, 이는 프로그래머가 프로그램을 병렬화하면서 데드락(deadlock)과 

같은 예외 사항들을 일일이 신경 써야 하기 때문에 사용하기 힘들다는 
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단점이 존재한다. 이 문제를 해결하기 위해 트랜잭셔널 

메모리(transactional memory)를 사용한 병렬화 기법들이 제시되었다. 

하지만, 이들은 자바스크립트 엔진을 직접 변형하는 방식이기 때문에 해당 

엔진이 설치된 웹 브라우저 내에서만 한정적으로 작동 가능하다는 

문제점이 존재한다.  

본 논문에서는 웹 어플리케이션이 높은 호환성을 가지고 있다는 이점을 

최대한 활용하기 위해 웹 워커 및 HTML5 에서 제공하는 기능들만 

사용하여 자바스크립트에서 사용 가능한 소프트웨어 트랜잭셔널 메모리 

시스템(jSTM)을 구현하였고, 이를 사용한 병렬화 시스템을 구현하였다. 

트랜잭셔널 메모리 시스템은 여러 개의 명령어들로 이루어진 트랜잭션을 

단위로 하여 공유 메모리를 접근하는 방식인데, 시스템을 구현하기 위해 

각 트랜잭션에서 쓰기 명령어를 사용하여 변경된 메모리 값을 적용시키는 

커밋(commit) 하는 과정과, 이전에 커밋된 값과 비교하여 트랜잭션들이 

공유 메모리에 접근하여 정상적인 값을 읽었는지 확인하는 과정을 

구현하여야 한다. 또한, 트랜잭션에서 잘못된 값을 읽은 경우 공유 메모리 

상태를 해당 트랜잭션이 실행되기 전의 상태로 복구해야 하기 때문에 복구 

지점을 만드는 과정도 필요하다.  

하지만 자바스크립트의 언어적 구조 때문에 자바스크립트 엔진을 

변경하지 않은 상태에서 트랜잭셔널 메모리를 구현할 때 고려해야 할 점이 

존재한다. 우선, 웹 워커들은 각자 고유의 메모리 영역을 사용하고 있기 

때문에 스레드들 내의 트랜잭션이 커밋한 메모리 값들이 메모리에 

직접적으로 반영될 수 없다. 또한, 자바스크립트에서는 메모리 주소를 직접 

사용하여 해당 메모리를 접근하는 것이 불가능하기 때문에 다른 방법을 

사용하여 메모리 복구 지점을 만들어야 한다. 이를 해결하기 위해 

트랜잭션의 명령어를 수행하는 부분과 트랜잭션 내에서 변경된 값을 
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커밋하는 스레드를 분리하였으며, 복구 지점을 만들기 위해 딥 

카피(deep-copy) 방식을 사용하여 각각의 스레드들 내에 정의된 

오브젝트(object)들의 모든 프로퍼티(property) 값을 복사하는 방식을 

사용하여 메모리 복구 지점을 생성하였다. 

이렇게 구현된 트랜잭셔널 메모리 시스템을 사용하여, 반복문 내의 각 

이터레이션(iteration)들이 독립적으로 실행될 수 있는 경우에 적용 가능한 

병렬화 기법인 DOALL 기법과 예측적 기법을 사용하여 이터레이션 간 

의존성을 제거한 경우 각 이터레이션들이 독립적으로 실행 가능할 때 적용 

가능한 Spec-DOALL 기법을 사용할 수 있도록 병렬화 API 를 

구현하였으며, 구현한 시스템을 사용하여 실제로 자바스크립트 

프로그램들을 병렬화하여 시스템의 성능을 측정하였다. 하지만, 시스템 

자체의 부하 때문에 병렬화된 프로그램들은 이상적인 경우와 비교했을 때 

훨씬 낮은 성능을 냈으며, 따라서 시스템의 성능을 향상시키기 위해 

시스템 부하를 분석하였다. 시스템의 부하는 각 워커를 동작시키기 위한 

동신 부하와 워커 내 트랜잭션들이 커밋하기 위해 메모리값 변경 기록을 

전송하는 통신 부하가 높은 비율을 차지했으며, 따라서 이를 줄일 수 있는 

방법을 추가적으로 구현하는 것이 필요하다. 
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