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ABSTRACT 

 

To support aggressive optimizations, many researchers employ data dependence 

profilers which identify dynamic dependence patterns in a program. Although their 

analysis motivates more beneficial PDGs (i.e. speculative PDGs), data dependence 

profilers that are not sensitive to the program contexts, such as function call sites 

and loop nest levels, are likely to produce false results.  I propose a context-aware 

memory profiler (CAMP) which traces memory dependencies with their full context 

information. CAMP is a compiler-runtime cooperative system which takes 

advantage of a static analysis to ease the overheads of context management in 

profiling, without compromising precision, coverage, or performance of profiling. 

Preventing from generating lots of false dependencies, CAMP enables compilers to 

build context-aware speculative PDGs that are more precise than what a context-

oblivious profiler makes. I show how a precise context-aware PDG facilitates a 

compiler optimization such as speculative parallelism. For 12 programs from SPEC 

benchmark suites, the evaluation results show that CAMP successfully removes 

significant number of false dependencies which take 70.8% of total dependencies 

that a context oblivious profiler makes. In the evaluation, CAMP finds false 

dependencies which take 73.3% of all possible memory dependencies at the finest  

granularity (i.e. instruction-pairwise and byte-level), while showing only 18.4 × 

slowdown. 
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Introduction 

Dependence information is essential for many compiler -assisted 

optimizations. In order to correctly transform programs, a compiler performs 

various analyses to collect information of dependence in the program. Control 

dependence information tells which portion of the program depends on which 

branch, call, or jump instruction. Data dependence information tells sets of 

instructions which access or update the same memory address so that a 

compiler can preserve correct orders of instructions. As a preparatory analysis 

for compiler optimizations, these types of dependence information are 

consolidated into a Program Dependence Graph (PDG) which illustrates the 

overall program structure and behavior. 

Although PDGs are widely used in many optimizations, they often fail to 

facilitate aggressive optimizations due to conservative static analyses on 

memory dependencies. Since compilers cannot determine the exact 

dependencies in programs, a statically constructed PDG gives the most 

conservative version of dependence information. Due to aliased pointers, 

compilers insert a great number of false dependencies into PDG, especially in 

languages that allow explicit use of pointer-based references. Limiting the 

Chapter 1 
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analyses that depend on PDG, these false dependencies adversely affect 

aggressive optimizations such as parallelization, offloading, and 

approximation. 

To aggressively optimize programs, modern compilers [3, 5, 7, 13, 19, 21, 

23, 25] employ memory profilers that trace dynamic memory dependences 

among instructions. Once rarely occurring dependences are identified via 

profiling, compilers speculatively remove the rarely occurring dependences 

from a program dependence graph (PDG) generating a speculative PDG. With 

the speculative PDG, the compilers can support aggressive optimization such 

as speculative parallelism. For example, even if independence among 

iterations cannot be proven statically, the compilers optimistically exploit 

loop-level parallelism when there is no inter-iteration dependence during 

profiling [13, 14, 15, 16, 20, 26, 28]. Therefore, generating a precise 

speculative PDG with high-coverage is crucial to enlarge aggressive 

optimization opportunities. 

Context-aware representation is essential for PDG to clarify data 

dependencies. Even for the same instruction pairs, data dependence patterns 

vary widely depending on the program context, such as a function call site 

stack and a loop nest level. Without call site contexts, a PDG cannot 

distinguish data accesses of the same functions from different call sites. Then, 

a compiler will conservatively insert data dependencies into the PDG between 

all the call sites, generating lots of false dependencies.  Moreover, in nested 

loops, there may exist inter-iteration dependencies between two instructions 
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in an inner loop, while not in an outer loop. If the PDG cannot distinguish two 

different loop contexts, the inter-iteration dependencies will be associated 

with both the inner loop and the outer loop. By excluding these false 

dependencies, a context-aware PDG gives more precise data dependence 

information. 

Although many researchers have proposed context-aware memory profilers 

that trace dynamic memory dependencies with context information, their tools 

suffer from severe overheads in terms of CPU cycles and memory space, and 

tracing all memory dependences with their contexts easily become impractical. 

In general, profiling memory dependencies greatly increases instruction 

counts to identify and record dependencies between instructions that touch the 

same memory address. Context awareness exacerbates this problem by 

separately treating the same pairs of instructions whose contexts differ. The 

profiler of [10], for example, shows over 250 times slowdown (serial version) 

because of its significant costs of managing history table whose entries are 

associated with loop iterations. 

Most existing memory profilers circumvent this problem at the expense of 

quality attributes of profiling. Targeting on a few specific optimizations, such 

as parallelization, [8, 10, 11, 22, 24] narrow down their scope of context 

information into loops, which harms availability of the profiling result to other 

optimization clients. Only a few memory profilers [4, 18] log full context 

information including function call sites as well as loops, albeit they 

compromise their precision by either using compacted context information or 
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representing dependencies in context granularity. Table 1.1 summarizes and 

compares the existing memory profilers.  

 

System 
Loop-

Aware 

Call Site-

Aware 

Full 

Coverage of 

Dependences 

Whole 

Program 

Coverage 

Profiling 

Granularity 

H. Yu et al. [24]   ×   × Variable 

A. Ketterlin et al. [8]   ×     Variable 

R. Vanka et al. [22]   × ×   Byte 

M. Kim et al. [10]   ×     Byte 

T. Chen et al. [4]   
Compacted 

Call Path ×   Byte 

Y. Sato et al. [18]     ×   Context 

CAMP [This thesis]         Byte 

 

Table 1.1 Comparison of memory profiling systems 

 

To generate precise context-aware PDGs, this paper proposes a new 

compiler-runtime cooperative Context-Aware Memory Profiler (CAMP) 

which traces memory dependencies in a byte level granularity. While 

preserving full context information, we focus on the instrumentation interface 

between static and dynamic analysis, so the former helps the latter to greatly 

reduce the overheads of managing contexts. The CAMP compiler statically 

generates a context tree which represents all the possible contexts in a PDG, 

and provides the CAMP runtime with static context offsets as hints to achieve 
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dynamic context IDs for every call site and loop. The CAMP runtime 

calculates a dynamic context ID with one arithmetic operation between the 

current context ID and the static offset, and records a memory access history 

with the context ID. Using one dynamic context ID from a simple operation 

simplifies the data structure and the algorithm of CAMP, and minimizes its 

profiling time and memory overheads. 

To further reduce profiling time, this paper also proposes a new 

heterogeneous sampling method that does not generate any false positive 

dependencies. Since memory profilers collect dependences that really 

manifest for given profiling inputs, the full-profiling results do not include 

any false positive (there is no dependence, but reported as having one) while 

the results may include false negative (there is a dependence, but reported as 

none) for non-travelled control flows. However, sampling memory 

instructions may yield false positive dependences because the profilers may 

link memory reads to wrong memory writes due to absence of memory write 

history. To avoid generating any false positive, CAMP adopts different 

sampling policies for read and write instructions. 

For 12 programs from SPEC CINT2000 and CINT2006 benchmark suites, 

CAMP finds that 70.8% of context oblivious profiling results are false positive 

on geometric average, and increases DOALL parallelism opportunities by 

average 9.7% more than loop-aware only memory profilers.  Compared to 

CAMP without sampling, CAMP with the heterogeneous sampling reduces the 
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profiling time by 10.8× (from 197.0× to 18.4× and memory overhead by 40% 

(from 2.7GB to 1.6GB) on average without any false positive result.  

In summary, the primary contributions of this paper are:  

 A compiler-runtime cooperative precise context-aware memory 

profiling system with full contexts (called CAMP) 

 A static context tree that represents all the possible dynamic contexts 

such as function call site stacks and loop nests 

 A novel heterogeneous sampling method that does not generate any 

false positive dependence 

 An in-depth evaluation of CAMP using 12 benchmarks from SPEC 

CINT2000 and CINT2006 benchmark suites 

The rest of this paper is organized as follows. Chapter 2 gives the motivation 

of this research and challenging issues in context-aware dependence profiling. 

Chapter 3 describes CAMP compiler and the proposed compiler technique. 

Chapter 4 explains the CAMP runtime and its algorithm. Chapter 5 explains 

the optimization method such as a novel sampling method which does not 

generate any false positive dependency. Chapter 6 discusses the meaning and 

the potential application of speculative context-aware PDGs, giving a case 

study of discovering hidden parallelism. Chapter 7 shows the evaluation 

results, and Chapter 8 contains related work. Finally, Chapter 9 concludes the 

thesis.  
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Motivation 

Context-aware dependence profiling is an essential step in building context -

aware PDG. Although a profiler gives information about only specific program 

executions, it realizes empirically predictable PDG, often called speculative 

PDG. Supporting precise and fine-grained representations, Context-awareness 

plays an important role not only in speculative PDGs, but also in dependence 

profiling. 

This section first motivates context-aware memory profiling and false 

positive-free sampling. Section 2.1 shows an example of real life program and 

a part of PDG of it, giving an idea of how context information affects data 

dependencies between different call sites and loops. It also shows how the 

context-awareness increases the precision of a speculative PDG by comparing 

with a speculative PDG with context-oblivious memory profiling results. 

Section 2.2 illustrates why speculative PDGs of the same function can vary 

depending on contexts and how context-awareness increases optimization 

opportunities such as uncovering hidden parallelism.  

 

Chapter 2 
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2.1. Dependence Information Quality: An Example 

of a Real Life Program 

Compared with a naive context-oblivious profiler, a context-aware profiler 

provides concise data dependence information in terms of both quantity and 

quality. As an example of a real-life program, Figure 2.2 illustrates parts of 

memory dependencies that context-aware and context-oblivious memory 

profilers collect for a global variable outcnt in gzip (Figure 2.1). True 

dependencies, observed by a context-aware memory profiler, are drawn in blue 

lines, whereas false dependencies which occur only from context -oblivious 

memory profiling are drawn in red lines. Notice that every pair of 

send_bits function calls is correlated by both dependencies.  

Compilers will conclude that any send_bits invocation is unable to 

reordered or parallelized due to false dependencies. These false dependencies 

originate from compiler's conservative assumptions on a single context -

oblivious dependency, i.e. the compiler inserts dependencies on outcnt++ 

for all the possible combinations of send_bits function calls. Given 

context-aware dependencies, the compiler can distinguish call sites of memory 

accesses, and prevent from generating false dependencies. Only for the 

variable outcnt in the whole program, the context-oblivious memory profiler 

claims 1,344,238 false dependencies, while there exist only 499 true memory 

dependencies. In addition, context-aware profiler elaborates the dependencies 
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by classifying it into intra-iteration (solid line) and inter-iteration (dotted line) 

with respect to a corresponding loop. 

 

void send_bits(value, length) { 

if (bi_valid> (int)size -length) { 

bi_buf|= (value << bi_valid); 

outbuf[outcnt++] = bi_buf; 

bi_buf= (ush)value >> (size -bi_valid); 

bi_valid+= length -size;  

} else { 

bi_buf|= value << bi_valid; 

bi_valid+= length; 

} 

} 

 

void compress_block(ltree, dtree) { 

while(lx < last_lit} { 

flag = flag_update(); 

lc= l_buf[lx++]; 

if (flag == 0) { 

send_bits(lc, ltree); // 1  

} else { 

code = length_code[lc]; 

send_bits(code, ltree); // 2 

extra = get_extra(code); 

if (extra != 0) { 

lc= get_lc(code); 

send_bits(lc, extra); // 3  

} 

code = d_code(dist); 

send_bits(code, dtree); // 4 

extra = get_extra(code); 

if (extra != 0) { 

dist= get_dist(code); 

send_bits(dist, extra); // 5 

} 

}  

} 

send_bits(END_BLOCK, ltree); // 6 

} 

 

Figure 2.1 Pseudo code of compress_block in gzip 
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Figure 2.2 A part of Speculative Program Dependence Graph of Figure 2.1 

 

2.2. Recording Context Information 

A precise speculative PDG with memory profiling results about dynamic 

dependences enables modern compilers [3, 5, 7, 13, 19, 21, 23, 25] to support 

aggressive optimization that cannot be achieved by static analyses only. For 

example, automatic speculative parallelizing compilers  [9, 13, 14, 15, 16, 20, 

26, 28] collect dynamic dependences in loops, and speculatively parallelize 

the loops ignoring rarely occurring dependences that static analysis cannot 

remove. Moreover, speculative PDGs help parallelizing compilers produce 

robust codes by augmenting fragile static analyses [9]. 

To draw context-aware dependencies, a profiler should incorporate context 

information into records of all memory access events. The dynamic 

dependences vary depending on their contexts such as loop nest levels and 
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function call stacks. Figure2.3 is a simple program which calculates moving 

weighted averages for matrices, and Figure 2.4 shows how context information 

refines and distinguishes a data dependency between a pair of instructions. 

Assuming that tmp1 in function wgtAvgV is held in a register (which is 

highly likely), a Read-After-Write (RAW) memory dependency from LD4 to 

ST6 occurs only when v1 and v3 are aliased1. For example, ST6 updates 

A[t][i] that LD4 reads at the next iteration of Loop L2 in Function call site 

F3 (Notice that wgtMovingAvg(A,A) makes v1 and v2 aliased). 

Otherwise, the RAW dependency does not exist. As shown in Figure 2.4.3, the 

most verbose context information, which considers both loops and call sites, 

provides the finest resolution on dependencies. In this regard, the context 

information on memory access histories plays a key role in indicating an exact 

position of dependencies in speculative context-aware PDG. 

A context-oblivious memory profiler that does not track calling context or 

loop nest severely limits the applicability of speculative parallelization. For 

example, such a profiler may report that there is a memory dependence from 

ST6 to LD4 with no available context information. As Figure 2.4.1 illustrates, 

since LD4 and ST6 form a cyclic dependence graph with the profiled memory 

dependence on A[t][i] and a statically found data dependence on tmp1, 

                                           

1 Since register dependencies manifest themselves at compile time, we 

exclude them from the scope of this paper. 
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automatic speculative parallelizing compilers are unable to parallelize both 

Loop L1 and Loop L2. 

Like most existing memory profilers [8, 19, 11, 22, 24], if a memory profiler 

is aware of loop nest levels, applicability of the speculative parallelization can 

be increased. As Figure 2.4.2 shows, the loop-aware memory profiler reports 

that there is an inter-iteration memory dependence from ST6 to LD4 for Loop 

L2 but not for Loop L1 because LD4 reads A[t-1][i] that ST6 updates 

at the previous invocation of Loop L1. Since there is no cyclic dependence 

in a dependence graph for Loop L1, the parallelizing compilers can 

parallelize Loop L1 while the compilers still cannot parallelize Loop L2. 

Therefore, not to lose this parallelism opportunity on Loop L1, the memory 

profiler should record dependences with loop nest levels.  

For more aggressive optimization, context information like function call site 

stacks is necessary. Instruction 22 and Instruction 24 call the same 

function wgtMovingAvg with different arguments such as (A, B) and (A, A), 

so wgtMovingAvg has different dependence graphs for each call site. As 

Figure 2.4.3 shows, a context-aware memory profiler records memory 

dependences for each context including call stacks, and allows compilers to 

generate different dependence graphs for loop nest levels and call stacks. As 

a result, the compilers can parallelize the outer loop L2 for call site F2 that 

cannot be parallelized with loop-aware memory profiling only. Moreover, 

context-awareness of memory profiling allows compilers to recognize memory 
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operations through getter and setter functions from different call sites as 

different memory operations, and to more aggressively optimize programs 

with mutator functions. 

Augmenting context information, however, incurs significant overheads. 

Attaching heavy data such as function call stacks, loop nesting information, 

and iteration counters to each memory access history is the simplest but almost 

infeasible approach. The profiler of [10], instead, utilizes pending and history 

tables to trace context changes (loop iteration) of memory accesses within 

nested loops. Still, since these tables are managed per loop nest, they cause 

significant memory overheads when the loop nests are deep. In  [8], the 

execution tree tracks and maintains context changes at profiling time. Besides 

managing the tree, their profiler needs to compute the latest common execution 

point of two memory accesses of a dependency, which also costs significant 

computational overheads. Consequently, most context-aware profilers suffer 

from serious computational and memory overheads, resulting in unacceptable 

profiling times. 
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void wgtAvgV(float *v1, float *v2, float *v3) { 

  // Loop L1 

  for(int i = 0; i < N ; i++){ 

    float tmp1 = v1[i];                // LD4 

    float tmp2 = v2[i]; 

    v3[i] = w * tmp1 + (1-w) * tmp2; // ST6 

  } 

} 

 

void wgtMovingAvg(float **in, float **out) { 

  // Loop L2 

  for(int t = 1; t < N ; t++){ 

    // Function Call Site F1 

    wgtAvgV(in[t-1], in[t], out[t]); 

  } 

} 

 

void main() { 

  float A[N][N], B[N][N]; 

  float v[N], w[N]; 

  // Function Call Site F2 

  wgtMovingAvg(A, B); 

  // Function Call Site F3 

  wgtMovingAvg(A, A); 

  // Function Call Site F4 

  wgtAvgV(v, w, v); 

} 

 

Figure 2.3 Example Program 
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Figure 2.4.1 Context Oblivious (Loop and Call Site Oblivious)  

 

 

Figure 2.4.2 Loop Aware (Call Site Oblivious) 

 

 

 

Figure 2.4.3 Context Aware (Loop and Call Site Aware) 

  

LD4  |  L2 / L1 

ST6  |  L2 / L1 

LD4  |  L2 

ST6  |  L2 

Loop L2: Loop L1: 

 
Intra-iteration Dependence 

LD4 | F2 / L2 

   

Loop L2 for Call Site F2: Loop L1 for Call Site F2: 

Loop L2 for Call Site F3: Loop L1 for Call Site F3: 

  

  

Inter-iteration Dependence 

ST6 | F2 / L2 

   

LD4 | F2 / L2 / F1/ L1  

   

ST6 | F2 / L2 / F1/ L1  

   

LD4 | F3 / L2    

ST6 | F3 / L2    ST6 | F3 / L2 / F1 / L1    

LD4 | F3 / L2 / F1 / L1    
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2.3. Observations: Predictable Aspects of Contexts 

To address the aforementioned problems, compilers can help profilers to 

reduce the cost of dealing context in several ways. A compiler could remove 

the need for managing context information by in-lining all function calls and 

unrolling loops, unifying all contexts into one; this radical approach seems 

plausible, but the size of program code will explode if the program has deep 

loop nests or function invocations. As another way to alleviate context 

management costs, compilers can provide concise representations for profilers 

to efficiently handle contexts at profiling time; since a compiler stati cally 

analyzes a target program before inserting instrumentation functions, it can 

give hints on how a profiler efficiently represents and computes contexts by 

leveraging its prior knowledges of the program. 

Based on compiler assistance, we make several observations regarding 

predictable aspects of contexts. First, given full access to the source code, we 

can statically enumerate every possible context of a program by analyzing 

control flow in context granularity. In other words, we can statically construct  

a context tree such as Calling Context Tree (CCT) [2, 6, 27] and Loop Call 

Context Tree (LCCT) [17, 18], and assign each node a unique context ID. 

Second, by using a simple identification methodology on context ID, profilers 

can efficiently track these IDs even without carrying the context tree. Third, 

as [10] also pointed out, dependencies between iterations often exhibit stride 

patterns in both a loop and loop nests. To avoid wasteful duplications of 
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context information regarding loops, profilers only need to tell whether a 

dependency is inter-iteration or intra-iteration, which is sufficient for both 

context-aware PDGs and various code optimization clients.  

 

 

  



  

- 18 - 

 

Compiler-assisted Context Management 

Though Chapter 2 points out the necessity of context-aware memory profiling, 

profiling memory dependences with full contexts suffers from huge profiling 

time overheads. To overcome the high profiling overheads, the CAMP 

compiler statically analyzes a program before profiling and simplifies context 

management of the CAMP runtime. 

3.1. Static Context Tree 

To efficiently manage the context changes, we proposes a new static context 

tree that represents all the possible contexts during the program execution. 

Unlike the existing context trees such as Loop Call Context Tree (LCCT) [17, 

18] and Calling Context Tree (CCT) [2, 6, 27] that profilers dynamically 

generate at profiling time, the CAMP compiler statically generates the context 

tree to alleviate context management overheads at profiling time. 

The CAMP compiler creates the context tree in two steps; context tree 

generation and context ID assignment. At the context tree generation step, the 

compiler creates a context tree by inserting a child node for every function call 

site and loop invocation. Figure 3.1 shows a context tree for the example code 

Chapter 3 
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in Figure 2.3. The compiler inserts three different children into the main node 

for call sites F2, F3 and F4. Here, though call sites F2 and F3 call the same 

function wgtMovingAvg, the compiler inserts different context nodes for 

each call site, thus generating different context nodes for the same call site F1 

and loop invocations L1 and L2 in wgtMovingAvg.  As a result, the 

context tree can differentiate memory instructions across all the dynamic 

contexts. 

 

 

 

Figure 3.1 Context tree for the example code in Figure 2.3 

main 
CtxID: 0 

Offset: +0 

F2 
CtxID: 1 

Offset: +1 

L2 
CtxID: 2 
Offset: +1 

F1 CtxID: 3 
Offset: +1 

L1 CtxID: 4 
Offset: +1 

F3 
CtxID: 5 

Offset: +5 

L2 CtxID: 6 
Offset: +1 

F1 CtxID: 7 
Offset: +1 

L1 CtxID: 8 
Offset: +1 

F4 
CtxID: 9 
Offset: +9 

L1 CtxID: 10 
Offset: +1 
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At the context ID assignment step, the CAMP compiler assigns a unique 

context ID to each context node. Since there can exist multiple context nodes 

for the same call site and loop invocation such as F1, L1 and L2 depending 

on the dynamically determined context stack, the compiler needs to assign 

different context IDs at the same static call site and loop invocation codes. 

Addressing the problem, the compiler assigns context IDs as a unique path 

sum where each call site and loop invocation has the same static offset, and 

calculates the context IDs and their static offset with pre -order tree traversal. 

Figure 3.1 shows context IDs and their static offsets for the context tree. 

Though L1 is invoked in multiple contexts with different IDs such as 4, 8 and 

10, its static offset from its parent contexts is one value, +1. The CAMP 

profiler dynamically calculates the context IDs by adding the static off set to 

the current context ID.  

While the CAMP compiler creates a context tree for most cases, there are two 

special cases that require special manipulation; recursive function call and 

indirect function call. In contrast to dynamically created context trees, static 

context trees are ignorant of recursion depth and the target function that a 

function pointer points to. So, the CAMP compiler marks recursive functions 

(including mutually recursive functions) before generating the context tree, 

and inserts only the first recursive function call site as a leaf loop context node, 

preventing from generating a context tree infinitely. Here, the compiler 

considers the recursive function call site node as a loop node, so the CAMP 

profiler can find its recursion depth by counting iteration numbers. For indirect 
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function calls, the compiler analyzes all the possible target candidates and 

inserts the candidates as children nodes.2 Figure 3.2.1 shows an example code 

with recursive function calls and indirect function calls. Figure  3.2.2 

illustrates that the compiler adds call site F3 as a leaf node due to recursive 

function calls between is_even and is_odd, and inserts all the possible 

indirect call candidates such as inc and dec for call site F4. 

 

 

  

                                           

2 Given full access to the source code, the CAMP compiler determines the 

candidates by matching type signatures of all functions. 



  

- 22 - 

Figure 3.2.1 Recursive/indirect function call example 

 

 

Figure 3.2.2 Context tree for Figure 3.2.1 

bool is_even(unsigned int n) { 

  if (n==0) return true; 

  else return is_odd(n-1);  // Call Site F1 

} 

bool is_odd(unsigned int n) { 

  if (n==0) return false; 

  else return is_even(n-1); // Call Site F2 

} 

void main() { 

  int (*fPtr)(int); 

  if(is_even(n)) // Call Site F3 

    fPtr = &inc; 

  else  

    fPtr = &dec; 

  fPtr(n);       // Call Site F4 

} 

 
    

 

 
   

 

       

  

  

  

int inc(int n) { 

  return n+1; 

} 

int dec(int n) { 

  return n-1; 

} 
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3.2. Context Management and Profiling Code 

Generation 

To track context changes, CAMP instruments not only memory accesses but 

also function calls and loops. During the program execution, contexts such as 

function call site stacks and loop nests are continuously changing. To reduce 

context management overheads, the CAMP compiler statically finds the 

context changing points such as entries and exits of the functions, loop 

invocations and loop iterations, and inserts instructions to notify the CAMP 

runtime of the context changes. Followings are the context changing notifiers, 

and Figure 3.3 shows how the CAMP compiler inserts the notifiers to the 

example in Figure 2.3. 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

void wgtAvgV(float *v1, float *v2, float *v3) { 

  begin_loop(+1); 

  for(int i = 0; i < N ; i++){ 

    profiling_load(&v1[i]); 

    float tmp1 = v1[i]; 

    profiling_load(&v2[i]); 

    float tmp2 = v2[i]; 

    profiling_store(&v3[i]); 

    v3[i] = w * tmp1 + (1-w) * tmp2; 

    next_iteration(); 

  } 

  end_loop(-1); 

} 
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15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

void wgtMovingAvg(float **in, float **out) { 

  begin_loop(+1); 

  for(int t = 1; t < N ; t++){ 

    profiling_load(&in[t-1]); 

    profiling_load(&in[t]); 

    profiling_load(&out[t]); 

    begin_function(+1); 

    wgtAvgV(in[t-1], in[t], out[t]); 

    end_function(-1); 

    next_iteration(); 

  } 

  end_loop(-1); 

} 

 

void main() { 

  float A[N][N], B[N][N]; 

  float v[N], w[N]; 

  begin_function(+1); 

  wgtMovingAvg(A, B); 

  end_function(-1); 

  begin_function(+5); 

  wgtMovingAvg(A, A); 

  end_function(-5); 

  begin_function(+9); 

  wgtAvgV(v, w, v); 

  end_function(-9); 

} 

 

Figure 3.3 Transformed program by the CAMP compiler for the program        

in Figure 2.3. Bold lines are added by the CAMP compiler. 

 

 begin_function/begin_loop(offset) notifies the beginning of a new 

context to the CAMP profiler with offset. The profiler calculates the new 
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context ID by adding the offset to the current context ID. If a loop context 

begins, the profiler pushes an iteration counter to the iteration counter 

stack that has iteration counts of loop nests.  

 

 end_function/begin_loop(offset) notifies the end of the current context 

to the profiler with offset. The profiler restores the previous context ID by 

adding the offset to the current context ID.  If a loop context ends, the 

profiler pops the iteration counter from the iteration counter stack.  

 

 next_iteration() notifies the iteration change to the CAMP profiler.  

Since only the loop context at top of the stack (i.e., the inner most loop) 

can iterate, there is no argument in this mark. The profiler increases the 

iteration counter at the top. 

 

With the context changing notifiers, the CAMP runtime efficiently reflects 

context changes and updates context IDs during the program execution.  

Since the most recently called function returns first, and the most recently 

entered loop (inner-most loop) exits first, programs change their contexts 

following the LIFO rule. As a result CAMP manages the dynamic context ID 

by adding or subtracting the context offset into and from the current context 

ID according to the context changes. For example, when a program enters 

(exits) a function and a loop nest, the context manager adds (subtract) the 
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context offset into (from) the current context ID. To manage dependencies in 

the iterated contexts, CAMP has a global iteration counter stack which keeps 

how many times each context in the context stack iterates. For every loop 

iteration, CAMP changes the iteration information in the corresponding 

iteration counter. 
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Context-Aware Memory Profiling 

The CAMP runtime mainly consists of three components: current context, 

dependence table and history table. This chapter describes the overall 

algorithm of context-aware memory profiling and each component of the 

runtime in details.  

 

4.1. Overall Algorithm of Context-Aware Memory 

Profiling 

CAMP runtime incorporates a context into every single dependency. A 

dynamic instruction instance has its context that represents function call site 

stacks and iteration information of nested loops when the instruction is 

executed. When CAMP generates a dependency, it needs to merge the 

instruction context into a dependence context that represents the context where 

the dependency is valid. For example, an inter-iteration RAW dependency in 

Figure 2.4.3 is valid at Loop L2 invoked by F3, but is not valid at Loop L2 

invoked by F2 nor Loop L3. Therefore, when adding the inter-iteration 

Chapter 4 
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dependency, CAMP should record its valid context such as Loop L2 invoked 

by F3. 

Figure 4.1 describes how the CAMP runtime generates dependencies with 

valid contexts. When an instruction accesses a memory location, the runtime 

receives the memory address and instruction ID, and has the current context 

ID and iteration counts of nested loops.  First, the CAMP runtime searches 

previous memory instructions that access the same memory address from its 

history table (Line 1), and generates unique dependence IDs from the 

instruction IDs and context IDs of the current instruction and all the previous 

instructions (Line 2).Since the dependence ID reflects instructions and their 

contexts, CAMP can differentiate dependencies with contexts. Moreover, the 

dependence ID enables us to infer its dependence type such as RAR, RAW, 

WAR and WAW because the instruction IDs involve their instruction types 

such as load and store. Then, the CAMP runtime calculates iterative relation 

of the dependency by comparing each iteration count in the iteration stacks 

(Line 4-10). Since the iterative relation is valid only in the same loop 

invocation, the runtime stops the comparison if the iteration counts of the two 

instructions are different.  To avoid inserting redundant dependencies, the 

runtime inspects the existence of the same dependencies in the dependence 

table (Line 11-20).  If there exists the same dependencies with the same 

context, the runtime merges the iterative relations of the current  and the 

existing dependencies. For example, if one dependency has inter-iteration 

relation and the other one has intra-iteration relation, the CAMP runtime marks 
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Figure 4.1 Context-aware Dependence Generation Algorithm 
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Data: addr: accessed address 

Data: dstID: accessed instruction ID 

Data: dstCtx: current context ID 

Data: dstIterStack: current iteration stack 

/*  Generate Dependences                        */ 

foreach (srcID, srcCtx, srcIterStack) ∈ getHistory(addr) do 

let depID = genDependenceID(srcID, srcCtx, dstID, dstCtx);  

let deptIter = NULL; 

foreach level = 0 to minStackLevel(srcIterStack, dstIterStack) do 

if srcIterStack[level] == dstIterStack[level]  then 

depIter[level] = INTRA; 

else 

depIter[level] = INTER; 

break; 

end 

   end 

   let dep = genDependence(depID); 

   if dep == NULL then 

      insertDependence(depID, depIter); 

   else 

      let oldDepIter = getDependenceIter(dep); 

      foreach level = 0 to maxStackLevel(oldDepIter, depIter) do 

         depIter[level] = oldDepIter[level] | depIter[level] ; 

      end 

      updateDependence(depID, depIter); 

   end 

end 

/*  Update History Tables                        */ 

if dstID == STORE then 

replaceHistoryElement(addr, dstID, dstCtx, dstIterStack); 

clearLoadHistory(addr); 

else 

   addHistoryElement(addr, dstID, dstCtx, dstIterStack); 

end 
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the dependency as mixed. 

After generating the dependency, the CAMP runtime updates the history table  

with the new instruction. (Line 22-28). If the current instruction is a load, the 

runtime simply adds the current instruction and its context in the load history 

table. Whereas, if the current instruction is a store, the runtime does not only 

replace the element in the store history table with the current instruction and 

its context, but also clears elements in the load history table because a WAR 

dependency is the relation between the current store and all the previous loads 

after the last store instruction. 

 

4.2. Memory Event with Context 

In addition to context changing notifiers, the CAMP compiler finds all the 

memory related instructions such as loads, stores, memory allocation, memory 

deallocation, and memory sets, and inserts the instructions to notify the CAMP 

runtime of execution of the memory related instructions. To efficiently manage 

the dependence table, the compiler statically and sequentially assigns numbers 

to all the load and store instructions. Since the compiler knows the total 

number of load and store instructions, the runtime can allocate an array for the 

dependence table and use the ID as an index. 

Figure 4.2(1) shows how the CAMP runtime creates memory instruction 

context from the memory event and the current context using the example code 
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in Figure 3.3 and the context tree in Figure 3.1. When Instruction 4 

accesses A[1][0] at L1 called by F1, L2 and F3, a memory event is notified 

with a memory instruction (LD4) and its memory address (A[1][0]). The 

runtime merges the instruction with context ID (Ctx8) and iteration counters 

(2/1), and generates a memory instruction context as 4:Ctx8(2/1). The 

generated instruction context will be used in the history table and dependence 

generation. 
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Figure 4.2 Structure of the CAMP runtime and its operation example on the 

program in Figure 3.3.3 

                                           

3 In the context, the number in left-most position means instruction ID, and the numbers after 

the context ID (Ctx8) are iteration counts of nested loops. In the dependence table element, 

the right half indicates loop iteration relation (I and X mean 'INTRA' and 'INTER', 

respectively). Updated elements by the operations in the figure are shaded in grey. 
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4.3. Dependence Table 

While executing programs, the CAMP runtime directly generates RAW, 

WAR and WAW dependencies and records the dependencies in the 

dependence table. Since the CAMP compiler lets the CAMP runtime know the 

total number of load and store instructions, the runtime allocates the 

dependence table as an array indexed by destination ID. Since different 

dependencies can share the same destination instruction, multiple 

dependencies can be stored in each element in the dependence table, so the 

runtime uses linked lists for each destination.  

Figure 4.2(2) shows how the CAMP runtime generates a RAW dependency 

and stores the dependency in the dependence table from the example code in 

Figure 3.3. Given the instruction context (4:Ctx8(2/1)) and memory 

address (A[1][0]), the runtime looks up the history table for the same 

address, and finds a store context (6:Ctx8(1/1)). With the two instruction 

contexts, the runtime generates a context-aware dependency according to 

algorithm in Figure 4.1. Since the iteration counts are different at L2, the 

iterative relation is valid up to L2, and L2 is marked as an inter-iteration 

dependence. Here, the CAMP runtime can safely ignore F1 and L1 contexts 

because the dependency exists only across different invocations for F1 and L1 

and does not affect instruction reordering in wgtAvgV and Loop L1. 
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4.4. History Table 

The CAMP runtime has load and store history tables that keep previously 

accessed load and store instructions for each memory location. Whenever a 

memory instruction accesses a memory location, the runtime looks up the 

access history from the history tables, generates dependencies between the 

current instruction and all the previous instructions in the history tables, and 

updates the history tables with the current instruction.  

Figure 4.2(3) shows how the CAMP runtime updates the history table on the 

memory event. After updating the dependence table, the runtime updates the 

history table with the new memory event. If the current memory event is a load 

like 4:Ctx8(2/1), the runtime simply adds the instruction context in the 

load history table. Thus, there can exist more than one load instruction context 

for the same memory address in the load history table. However, if the current 

memory event is a store, the runtime replaces the element in the store history 

table to the instruction context, so there exists at most one instruction context 

for each memory address in the store history table. Moreover, a store memory 

event clears elements in the load history table. This clearance allows the 

runtime not to generate false WAR dependences between the current store 

instruction and a load instruction before the previous store instruction.  

The history tables are implemented in shadow memory. It is logically 

orthogonal to original application address space. By mirroring the application 

address space, it enables the runtime to efficiently record and retrieve memory 
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access histories. When a memory address is accessed, the runtime calculates  

the corresponding shadow address simply with a few bit operations. A history 

data like 4:Ctx8(2/1) can be found at these shadow addresses. In an on-

demand fashion, the shadow memory is reactively allocated and freed at a page 

granularity, sparing lots of memory space. This idea of shadow memory is 

similar to the ones in [4, 8]. 
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Heterogeneous Sampling in CAMP 

Memory profilers are very sensitive to false positives that affect compiler 

optimization. Since memory profilers collect dependences only for  given 

profiling inputs, profiling results always involve false negative for non-

travelled control flows. Thus, when compilers aggressively optimize programs 

with the profiling results, the compilers assume that false negative 

dependences can manifest at run-time. However, since the memory profilers 

collect dependences that really manifest, profiling does not generate any false 

positive dependence ideally, and compilers do not assume a false positive 

dependence in their optimization. Therefore, profiling optimization that can 

introduce false positive results may significantly affect compiler analysis and 

optimization. 

To further optimize our profiling method, we propose a heterogeneous 

sampling method which employs two different sampling patterns together; 

random sampling and consecutive sampling. Since major overheads of 

profiling are associated with loops, we apply these two sampling methods only 

inside loops. Random sampling is to randomly choose loop iterations where 

all memory instructions are instrumented. Whenever CAMP encounters a new 

Chapter 5 
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iteration (i.e. next_iteration()), it randomly decides whether the 

iteration should be inspected, according to the predetermined random sampling 

ratio. Consecutive sampling, whereas, takes into account first several 

iterations of a loop to be instrumented. Dependence patterns in loops are 

usually straightforward (they often occurs consecutively, or in stride patterns.), 

so they are detectable in first several iterations. By taking advantage of this 

property, consecutive sampling catches most of regular dependencies in loops 

at an early stage, easing the burdens of random sampling later. To avoid 

exhaustive loop profiling, we apply these two different sampling method 

together in choosing which iterations to be inspected, yet  finding most of 

dependencies in loops. 

To avoid generating false positive dependencies, CAMP applies different 

sampling policies to memory reads and writes. Figure 5.1 shows how a careless 

sampling policy introduces false positive dependencies. Notice tha t only 

sampling memory write instructions introduces false positive because the 

absence of up-to-date memory write history can make a memory profiler 

generate a dependency with a wrong memory write instruction. For example, 

the absence of ST2 leaves the memory write history on Address A not 

updated. Thus, the profiler generates dependencies with ST1 instead of ST2 

for following memory instructions, and newly introduces false positive such 

as WAW(ST1->ST3) and RAW(ST1->LD2) that are red lines in Figure 

5.1(c). To prevent this situation, CAMP updates history tables for all the 

memory writes. In other words, for non-sampled memory reads, it skips all the 
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Table 5.1 Heterogeneous sampling for read and write 

 

three steps of the routine in Figure 4.2. Whereas, for non-sampled memory 

writes, it skips only the dependence table update step. Since the number of 

memory writes is smaller than the number of reads, and updating the history 

tables is cheaper than updating dependence tables, CAMP prevents any false 

positive dependency without sacrificing much of the performance. Table 5.1 

summarizes CAMP sampling policies. 

 

 

 

 

  

Operations 

Sampled Not Sampled 

Read Write Read Write 

Context Creation     ×   
History Table Update     ×   

Dependence Table Update     × × 
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(b) Full profiling result 

 

(c) Sampled profiling result 

 

 

store A; //ST1, sampled 

load A; //LD1, not sampled 

store A; //ST2, not sampled 

load A; //LD2, sampled 

store A; //ST3,sampled 

 

(a) Sequence of memory instructions 

 

 

 

 

 

Figure 5.1 Dependences from full profiling and sampled profiling.4 

                                           

4 Grey means false negative, and red means false positive 
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Context-Aware PDGs and 

Optimization Opportunities 

 By excluding a large number of false dependencies, CAMP helps a compiler 

to generate much more concise context-aware PDGs than a context-obvious 

profiler. Since a program often manipulates memory values through accessor 

functions such as getter and setter functions across all the program points, 

context-oblivious profiling forces compilers to conservatively insert 

dependencies into a context-aware PDG for all the combinations between 

getters and setters, spawning lots of false dependencies. Preventing such faults, 

CAMP allows compilers to distinguish memory accesses at different call sites. 

Figure 6.1 shows the ratios of false dependencies that CAMP finds from 

context oblivious memory profiling results. Here, the false dependencies are 

exactly the same concept of the red edges in Figure 2.2. We find that 70.8% 

of context oblivious memory profiling results for 12 programs are false.  

In order to show their potential of context-aware speculative PDGs, this work 

performs a case study for an aggressive optimization, namely speculative 

Chapter 6 
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parallelism. Even if independence among iterations cannot be proven 

statically, this technique optimistically exploits loop-level parallelism when 

no inter-iteration dependency is exposed during profiling. It serves as a 

foundational technology for many automatic parallelizing compilers. More 

details are in [9, 13, 14, 15, 16, 20, 26, 28]. To see how much CAMP increases 

parallelism opportunities, we compare two numbers of parallelizable loops in 

the programs; one is estimated by CAMP and the other is estimated by a loop-

aware only memory profiler (LAMP). A loop is considered as a parallelizable 

loop if the loop does not have any inter-iteration control, register and memory 

dependency except on induction variables. For simplicity, we only consider 

DOALL parallelism in this case study. Here, the LAMP profiler is equivalent 

to a CAMP profiler without function call-site awareness. 

Figure 6.2 shows the increment of parallelizable loops by CAMP against 

LAMP. Compared with LAMP, CAMP increases parallelizable loops by 9.7% 

on average and by up to 54.2% (401.bzip2). As CAMP provides more 

concise dependence information, our compiler finds additional loops that is 

free of inter-iteration dependencies in most cases. These additional loops were 

considered to be not parallelizable by LAMP because, for example, functions 

that touches memory variables are invoked inside their loop body, or a single 

instance of them actually has an inter-iteration dependency in a certain context. 

Thanks to context-aware PDG, our compiler corrects these misjudgments by 

accepting more diversified contexts of a loop. CAMP, however, fails to 

increase parallelism opportunities for 177.mesa and 462.libquantum 
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because the programs have regular memory access patterns for LAMP enough 

to find parallelizable loops. CAMP also fails to increase parallelism for 

188.ammp and 429.mcf because CAMP creates context trees with a small 

number of context nodes due to recursive calls.  
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Figure 6.1 Ratio of false dependencies that CAMP finds from context 

oblivious memory profiling results 

Figure 6.2 Increment of DOALL parallelizable loops                      

with CAMP compared to LAMP  
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Performance and Sampling Accuracy 

We implemented the CAMP compiler and runtime on top of the LLVM 

compiler infrastructure [12] (revision 242,220). It is evaluated with 12 

general-purposed programs in the SPEC CINT2000 and CINT2006 benchmark 

suites [1]. All the evaluations were done natively on an Intel® Core™ i7-4770 

machine that has 4 cores running at 3.40GHz and 16 GB of RAM. The 

programs were compiled with the -O3 optimization flag. 

Table 7.1 lists the evaluated programs along with information such as brief 

description and statistics on static and dynamic profiled contexts and memory 

instructions.  Details about each program can be found in [1]. The numbers 

of loops and call sites in the programs range from 153 (429.mcf) to 6,292 

(464.h264ref), and the numbers of executed memory instructions also 

range from 101 million (164.gzip) to 13 billion (179.art). 
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Table 7.1 Benchmark details.5 

 

7.1. Time and Memory Overheads of CAMP 

Figure 7.1 shows the whole program profiling time and memory overheads 

of CAMP. Bases are the execution time and memory usage of the original 

program without profiling. This paper evaluates a context -oblivious profiler, 

CAMP without sampling and CAMP with various sampling conditions to 

analyze the overheads of context-awareness and the effectiveness of the 

proposed heterogeneous sampling. Here, the context-oblivious profiler is 

equivalent to CAMP profiler without context-awareness. CAMP with 

sampling profiles memory instructions at a few initial iterations and randomly 

                                           

5 M in the numbers of dynamic instances means millions. 

Benchmark 

# of Static Instances # of Dynamic Instances 

Functions Loops 
Call 

Sites 
Loads Stores Calls 

Loop 

Invo. 
Loads Stores 

164.gzip 70 200 462 1191 1134 5M 1M 69M 32M 

175.vpr 155 482 2299 4250 1336 113M 50M 2118M 573M 

177.mesa 1019 1340 4827 16594 11744 3913M 8M 5356M 3751M 

179.art 26 132 274 674 282 71M 255M 9810M 3359M 

188.ammp 179 461 1453 4031 1336 183M 95M 6618M 1680M 

300.twolf 190 1082 2294 10585 3773 12M 20M 407M 125M 

401.bzip2 69 301 487 2514 1662 41M 101M 1116M 267M 

429.mcf 24 58 95 372 292 3M 81M 1198M 138M 

433.milc 235 329 2680 3498 1064 47M 7M 1505M 439M 

456.hmmer 467 1124 5168 9739 4594 64M 47M 3316M 1853M 

462.libquantum 95 119 568 646 345 182M 77M 5366M 2089M 
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selected iterations of each loop, and all the memory instructions that are not 

in a loop. 

(a) Profiling time normalized to native program execution  

(b) Memory usage 

Figure 7.1 Profiling time and memory overheads.6 

                                           

6 Here, context-oblivious, CAMP, and CAMP (4% + 8) mean CAMP profiler 
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Figure 7.1 shows that CAMP without sampling suffers from 197.0× profiling 

time and 2.7GB memory overheads on average. Compared to context oblivious 

profiler, the context-awareness increases profiling time and memory usage by 

1.9× and 1.6× respectively. Most of the increased overheads come from 

generating additional dependencies between the same instructions with 

different contexts that the context oblivious profiler cannot distinguish, while 

context management overheads are negligible. Sampling dramatically reduces 

the profiling time and memory overheads. CAMP that samples memory 

instructions at initial 4 iterations and 1% randomly selected iterations shows 

18.4× profiling time and 1.6GB memory overheads.  

For 188.ammp, there is almost no profiling time and memory overhead 

difference across context oblivious, CAMP and CAMP with sampling. The 

main function of 188.ammp invokes a recursive function call, 

read_eval_do, in which most of the program is executed. Since CAMP 

considers a recursive function call site as a leaf node of a context tree, CAMP 

creates only 7 context nodes for 188.ammp, and profiles most of memory 

instructions with the same context like context oblivious profiling as a 

consequence. For other programs with recursive function calls such as 

                                           

without context awareness, CAMP profiler without sampling, and CAMP 

profiler that samples memory instructions at initial 8 iterations and 4% 

randomly selected iterations of each loop respectively. CAMP (4% + 8) also 

profiles all the memory instructions not in a loop. 
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177.mesa, 300.twolf, 429.mcf, 456.hmmer and 462.libquantum, 

CAMP creates effective context trees and generates precise profiling results.  

429.mcf suffers from high memory overheads compared to others.  CAMP 

creates history tables in page size granularity to amortize history table creation 

overheads with spatial locality. Unfortunately, since 429.mcf sparsely 

touches memory spaces that span over the page size, CAMP repeatedly and 

inefficiently creates the history tables instead of reusing existing tables, so 

CAMP suffers from significant memory overheads for 429.mcf. 

 

7.2. Sampling Accuracy 

While sampling memory operations reduces profiling time and memory 

overheads, sampling compromises precision and sensitivity. To evaluate 

precision and sensitivity of the proposed heterogeneous sampling, this work 

measures false positive and false negative of different sampling ratios. Here, 

precision is the fraction of sampled dependencies that really exist, while 

sensitivity is the fraction of real dependencies that are sampled. The preci sion 

and sensitivity are calculated by equation 7.1. The heterogeneous sampling 

adopts two different sampling methods such as a consecutive profiling that 

profiles only a few consecutive initial iterations and a random sampling that 

profiles randomly selected iterations. CAMP (4% + 8) means that all the 

memory instructions at initial 8 consecutive iterations and 4% randomly 

selected iterations of each loop are profiled. The heterogeneous sampling 
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profiles all the memory instructions not in a loop because the instructions are 

not repetitive. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
# 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

# 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  # 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
# 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

# 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  # 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

Equation 7.1. Precision and Sensitivity of Sampling 
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For all the programs and sampling ratios without any exception, CAMP does 

not generate any false positive dependency, thus showing 100% precision. 

Since the heterogeneous sampling updates history tables for all the writes, 

CAMP correctly finds corresponding memory write history elements for each 

memory operations. Though the heterogeneous sampling updates history 

tables for all the writes to guarantee 100% precision, Figure 7.1(a) shows that 

the sampling still dramatically reduces the profiling time by 10.8×. 

The heterogeneous sampling also increases sensitivity by efficiently tracing 

regular and irregular memory access patterns. Figure 7.2 and Figure 7.1(a) 

illustrate sensitivity and profiling time of the heterogeneous sampling with 

different sampling ratios. Profiling a few consecutive initial iterations largely 

increases the sensitivity by tracing regular memory accesses among 

consecutive iterations that the random sampling could miss, while the 

additional consecutive profiling incurs only a small profiling time increase. 

For example, compared with 1% random sampling only, the additional 

consecutive sampling for 4 initial consecutive iterations increases the 

sensitivity by 16.1% at the expense of only 5.0% profiling time increase.  
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Figure 7.2 Sensitivity of CAMP with different sampling ratios.7 

 

  

                                           

7 Here, precision of CAMP is not illustrated as a graph because the sampling 

results show 100% precision for all the programs and sampling ratios.  
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Related Work 

8.1. Context-Aware Memory Profilers 

Like CAMP, context-aware memory profilers [4, 18] generate memory 

dependencies with their contexts such as function call stacks and loop nests. 

However, none of them fully generates the memory dependencies between all 

the instructions in a program.  

T. Chen et al. [4] made full-transitive data dependence profiler using a unified 

load/store history table. Since the history table only records the most recent 

memory instruction, the profiler only generate dependencies between the 

current memory instruction and the most recent memory instruction on the 

same memory, and the compiler reconstructs full memory dependencies from 

the profiling results with transitive relationship. However, since an instruction 

can touch multiple memory addresses, the reconstruction can generate false 

positive results. Moreover, while the profiler uses the expensive hash function 

to access the elements in the table, CAMP accesses the elements in the history 

tables in a few bitwise operations that require much less performance overhead.  

Chapter 8 
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Y. Sato et al. [18] generated dependences between code regions such as loops 

and functions instead of instructions. Since there is no information about 

dependences between instructions in the profiling results, the profiling results 

limit speculative compiler optimization. Moreover, the profiler only generate 

RAW dependences, so reordering instructions without renaming is limited.  

 

8.2. Loop-Aware Memory Profilers 

Loop-aware memory profilers [8, 10, 11, 22, 24] trace memory dependences 

only with loop contexts. Although the profilers find inter-iteration and intra 

iteration dependences like CAMP, they cannot distinguish dependences from 

different function call stacks.  

J. R. Larus [11] proposed automatic parallelization system using a loop-aware 

memory profiler. The system checks inter-iteration dependences but does not 

check intra-iteration dependences. Due to its inefficient memory access 

history management, the profiler suffers from severe memory overhead and 

time overhead.  

M. Kim et al. [10] proposed SD3 profiler that is a parallel memory profiler. 

SD3 reduces profiling time overhead with parallel profiling, and also reduces 

memory usage overhead with data compression using frequent loop-stride 

characteristics of computational program. Since each memory dependence 

generation in CAMP is independent of each other if they access different 
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memory address, CAMP also can be parallelized like SD3, and additional 

profiling overhead reduction can be achieved.  

H. Yu et al. [24] proposed an object-based dependence profiler. The profiler 

attaches tags to variables that have access history on the variables. This work 

profiles a target loop instead of the whole program, so users should execute 

the profiler multiple times to optimize multiple regions in a program.  

R. Vanka et al. [22] proposed a set-based dependence profiler using software 

signatures. The profiler statically finds relevant dependences that are required 

for optimization, and profiles the instructions. Although the profiler has low 

time overhead, the profiling results can be incorrect because the tool profiles 

only pre-selected instruction sets.  

A. Ketterlin et al. [8] optimized profiling overhead using two main techniques: 

coalescing consecutive accesses and parameterizing loop nests. The profiler 

treats consecutive data structures like arrays as a single entity. In other words, 

the profiler supports variable profiling granularity for consecutive data 

structure. Parameterizing loop nests reduces profiling overheads exploiting 

static control loops where all the memory accesses are determined only by 

parameters of the loops.  
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8.3. Context Management in Profilers 

Context management of CAMP is highly inspired by previous context-aware 

performance profilers [2, 6, 27]. G. Ammons et al. [2] first introduced a call 

tree in which each node reflects a call site. Adaptive calling context tree 

profilers [6, 27] support sampling-based calling context management to reduce 

performance overhead. Unlike the previous profilers [2, 6, 27], CAMP 

constructs a context tree for every function call site and loop invocation. Since 

the context of CAMP reflects not only call sites but also loop nests, CAMP 

additionally has an iteration stack to store iteration counts of each loop in a 

loop nest. 
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Conclusion 

In order to make precise context-aware PDGs, this paper proposes a context-

aware memory profiler (CAMP) which traces memory dependencies with their 

full context information. As a compiler-runtime cooperative system, CAMP 

utilizes a static context tree to make concise representations for every 

obtainable context in a program. At profiling time, these concise 

representations enable efficient discovery of context-aware dependencies. 

Regarding the resultant PDGs, CAMP discovers that 70.8% of total 

dependencies that a context oblivious profiler makes are false; it allows us to 

deny a significant number of false dependencies which stem from ignorance 

of contexts, thus resulting in more precise PDGs. Through a case study, we 

show that how a precise context-aware PDG facilitates a compiler optimization 

such as speculative parallelism. With the heterogeneous sampling method, 

CAMP finds 73.3% of all possible memory dependencies at the finest 

granularity (i.e. instruction-pairwise and byte-level), while suffering from 

only 18.4 ×  slowdown for 12 programs from SPEC, which is considered 

acceptable in practice. 

Chapter 9 
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요약문 

 

 

 

프로그램에 존재하는 데이터와 컨트롤의 의존관계를 표현하는 

Program Dependence Graph(PDG)는 프로그램 분석에 있어서 

핵심적인 역할을 해왔다. 특히, 프로파일링(profiling)에 의해 

동적으로 생성된 Speculative PDG 는 자동 병렬화(automatic 

parallelization)와 같은 공격적인 최적화 기법에 필수적으로 쓰인다. 

예컨대, [9, 13]에서는 루프에 존재하는 동적 의존 관계를 메모리 

프로파일러로 측정하여, 런타임에 자주 발생하지 않는 의존 관계를 

무시함으로써 프로그램을 병렬화 하였다. 

그런데 PDG 를 프로파일러가 동적으로 생성할 때에는, 함수 호출 

위치(function call site)와 루프와 같은 콘텍스트(context) 정보를 

담고 있어야 더욱 정확한 PDG 를 만들 수 있다. 만일 콘텍스트 

정보가 없으면 다른 콘텍스트에서 실행된 같은 명령어 쌍을 구분할 

수 없게 되어 수 많은 거짓 의존관계를 낳게 된다. 예컨대, 루프에 

대한 콘텍스트 정보가 없다면, 루프 반복 구간 안에서 발생하는 

의존 관계(intra-iteration dependency) 와 반복 구간 사이에 
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발생하는 의존 관계(inter-iteration dependency)를 구분할 수 없게 

된다. 이와 같은 문제를 해결하기 위해서는 콘텍스트를 인지하는 

(context-aware) 프로파일러를 만들어야 한다. 

본 연구에서는 더욱 정확한 PDG를 생성하기 위해, 콘텍스트를 인

지하는 프로파일러인 CAMP를 제안한다. CAMP는 프로그램에서 발

생하는 모든 메모리 의존 관계를 byte 단위로 측정하며, 각 의존 

관계마다 모든 콘텍스트 정보를 빠짐없이 기록한다. CAMP 컴파일

러는 프로그램의 구조를 정적으로 분석하여, 프로그램에서 존재할 

수 있는 모든 콘텍스트를 표현하는 콘텍스트 트리(Context Tree)를 

만드는데, 이는 CAMP의 런타임 시스템이 단 하나의 동적 콘텍스트 

ID만으로 다양한 콘텍스트를 계산하는 것을 가능케 한다. CAMP 런

타임은 프로그램의 실행 콘텍스트가 변화할 때마다 동적 콘텍스트 

ID에 정적 콘텍스트 ID를 더하는 간단한 산술연산을 한번만 취함으

로써 바뀐 콘텍스트를 계산한다. 새로운 콘텍스트에서 읽기(load), 

쓰기(store)와 같은 메모리 접근이 관측되면 해당 메모리 주소에 접

근한 과거 기록을 사용하여 메모리 의존 관계를 계산하며 그 결과

를 콘텍스트와 함께 저장한다. 결과적으로, 콘텍스트 트리는 CAMP

의 프로파일링 시간을 단축시키고 메모리 오버헤드를 완화하는데 

핵심적인 역할을 한다. 
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프로파일링 오버헤드를 추가적으로 줄이기 위해서 CAMP 는 두 

가지 샘플링 기법을 결합하여 사용한다. 첫 번째 샘플링 기법은 

루프의 반복 구간을 무작위로 선정하여 선정된 구간에서만 메모리 

접근을 관측하는 무작위 샘플링(random sampling)이다. 두 번째 

샘플링 기법은 루프의 처음 반복 구간 몇 차례만 관측하여 루프에 

존재하는 줄무늬(stripe) 패턴의 의존 관계를 찾아내는 연속적 

샘플링(consecutive sampling)이다. 두 샘플링 기법을 결합하여 

사용함으로써 루프에 존재하는 대부분의 의존관계를 찾아 내었다. 

또한, 거짓 양성(false positive)이 발생하는 것을 방지하기 위해, 

샘플링 여부와 상관없이 쓰기(store) 연산이 발생하면 메모리 접근 

기록 테이블 (History Table)을 초기화 하였다. 

SPEC 벤치마크[1]에 대하여 실험한 결과, CAMP 를 사용하면 의존 

관계를 더욱 정확히 찾아낼 수 있을 뿐만 아니라 더 많은 루프를 

병렬화 할 수 있다. CAMP 는 콘텍스트를 인지하지 못하는 

(context-oblivious) 프로파일러가 만들어내는 모든 의존 관계 중 

약 70.8%가 거짓(false positive)이라는 것을 밝혀냈다. CAMP 를 

사용하면 PDG 를 더욱 간결하고 정확하게 나타낼 수 있고, 이렇게 

생성된 PDG 를 사용하면 병렬화가 가능한 루프를 9.7%만큼 추가로 

찾아 낼 수 있다. 401.bzip2 의 경우에는 병렬화 할 수 있는 루프가 

54.2%만큼 증가한다. 
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이 연구의 주요 성과를 요약하면 다음과 같다. 

 프로그램에 존재하는 의존관계를 콘텍스트 정보 손실 없이 

관측할 수 있도록 프로파일러를 만듦 

 컴파일러의 정적 분석(static analysis)을 통해 프로그램에 

존재할 수 있는 모든 콘텍스트를 간략하게 표현할 수 있는 

콘텍스트 트리 개발하였고 이것으로 프로파일링 오버헤드를 

완화시킴. 

 서로 다른 샘플링 기법을 결합하여 거짓 양성 관측 없이 

대부분의 의존관계를 찾아낼 수 있는 새로운 샘플링 기법 제안 

 SPEC INT2000 과 SPEC2006 을 사용한 심층 분석을 토대로 

콘텍스트 정보를 포함한 speculative PDG 의 장점을 분석 
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