

Master’s Thesis

Context-Aware Memory Dependence Profiling

Juhyun Kim (김 주 현)

Department of Computer Science and Engineering

Pohang University of Science and Technology

2017

콘텍스트를 인지하는

메모리 의존성 프로파일링

Context-Aware Memory Dependence Profiling

Context-Aware Memory Dependence Profiling

by

Juhyun Kim

Department of Computer Science and Engineering

Pohang University of Science and Technology

A thesis submitted to the faculty of the Pohang University of

Science and Technology in partial fulfillment of the requirements

for the degree of Master of Science in the Department of

Computer Science and Engineering

Pohang, Korea

December 1, 2017

Approved by

Prof. Hanjun Kim

Academic Advisor

Context-Aware Memory Dependence Profiling

Juhyun Kim

The undersigned have examined this thesis and hereby certify

that it is worthy of acceptance for a Master's degree from

POSTECH.

 11/21/2017

Committee Chair Hanjun Kim

Member Jangwoo Kim

Member Kyungmin Bae

MCSE 김주현 Juhyun Kim,

20152083 Context-Aware Memory Dependence Profiling

콘텍스트를 인지하는 메모리 의존성 프로파일링

Department of Computer Science and Engineering, 2017, 64P,

 Advisor: Hanjun Kim

Text in English.

ABSTRACT

To support aggressive optimizations, many researchers employ data dependence

profilers which identify dynamic dependence patterns in a program. Although their

analysis motivates more beneficial PDGs (i.e. speculative PDGs), data dependence

profilers that are not sensitive to the program contexts, such as function call sites

and loop nest levels, are likely to produce false results. I propose a context-aware

memory profiler (CAMP) which traces memory dependencies with their full context

information. CAMP is a compiler-runtime cooperative system which takes

advantage of a static analysis to ease the overheads of context management in

profiling, without compromising precision, coverage, or performance of profiling.

Preventing from generating lots of false dependencies, CAMP enables compilers to

build context-aware speculative PDGs that are more precise than what a context-

oblivious profiler makes. I show how a precise context-aware PDG facilitates a

compiler optimization such as speculative parallelism. For 12 programs from SPEC

benchmark suites, the evaluation results show that CAMP successfully removes

significant number of false dependencies which take 70.8% of total dependencies

that a context oblivious profiler makes. In the evaluation, CAMP finds false

dependencies which take 73.3% of all possible memory dependencies at the finest

granularity (i.e. instruction-pairwise and byte-level), while showing only 18.4 ×

slowdown.

Contents

1. Introduction…………………………………………………………. 1

2. Motivation……………………………………………………………7

2.1. Dependence Information Quality: An Example of a Real Life Program….. 8

2.2. Recording Context Information………………………………………………10

2.3. Observations: Predictable Aspects of Contexts……………………………..16

3. Compiler-assisted Context Management…………………………..18

3.1. Static Context Tree……………………………………………………………18

3.2. Context Management and Profiling Code Generation………………………23

4. Context-Aware Memory Profiling………………………………….27

4.1. Overall Algorithm of Context-Aware Memory Profiling…………………...27

4.2. Memory Event with Context………………………………………………….30

4.3. Dependence Table…………………………………………………………….33

4.4. History Table………………………………………………………………….34

5. Heterogeneous Sampling in CAMP…………………………………..36

6. Context-Aware PDGs and Optimization Opportunities……………40

7. Performance and Sampling Accuracy………………………………44

7.1. Time and Memory Overheads of CAMP…………………………………….45

7.2. Sampling Accuracy…………………………………………………………...48

8. Related Work………………………………………………………..52

8.1. Context-Aware Memory Profilers……………………………………………52

8.2. Loop-Aware Memory Profilers………………………………………………53

8.3. Context Management in Profilers…………………………………………….55

9. Conclusion………………………………………………………..…56

REFERENCES……………………………………………………...… 61

List of Figures

2.1 Pseudo code of compress_block in gzip……………….. 9

2.2 A part of Speculative Program Dependence Graph...................10

2.3 Example Program………………………………………….….14

2.4.1 Context Oblivious (Loop and Call Site Oblivious)……...……15

2.4.2 Loop Aware (Call Site Oblivious)………………………….…15

2.4.3 Context Aware (Loop and Call Site Aware)………………..…15

3.1 Context tree for the example code in Figure 2.3…………...….19

3.2.1 Recursive/indirect function call example……………………..22

3.2.2 Context tree for Figure 3.2.1……………………………….….22

3.3 Transformed program by the CAMP compiler for the program in

Figure 2.3……………………………………………………...24

4.1 Context-aware Dependence Generation Algorithm………….29

4.2 Structure of the CAMP runtime and its operation example on the

program in Figure 3.3 ………………………………………. 32

5.1 Dependences from full profiling and sampled profiling ……. 39

6.1 Ratio of false dependencies that CAMP finds from context

oblivious memory profiling results…………………..……… 43

6.2 Increment of DOALL parallelizable loops with CAMP

compared to LAMP…………………...………………………43

7.1 Profiling time and memory overheads ……………………… 46

7.2 Sensitivity of CAMP with different sampling ratios………….51

List of Tables

1.1 Comparison of memory profiling systems……………………..4

5.1 Heterogeneous sampling for read and write…………………..38

7.1 Benchmark details………………………………………….…45

List of Equations

7.1 Precision and Sensitivity of Sampling………………………...49

- 1 -

Introduction

Dependence information is essential for many compiler -assisted

optimizations. In order to correctly transform programs, a compiler performs

various analyses to collect information of dependence in the program. Control

dependence information tells which portion of the program depends on which

branch, call, or jump instruction. Data dependence information tells sets of

instructions which access or update the same memory address so that a

compiler can preserve correct orders of instructions. As a preparatory analysis

for compiler optimizations, these types of dependence information are

consolidated into a Program Dependence Graph (PDG) which illustrates the

overall program structure and behavior.

Although PDGs are widely used in many optimizations, they often fail to

facilitate aggressive optimizations due to conservative static analyses on

memory dependencies. Since compilers cannot determine the exact

dependencies in programs, a statically constructed PDG gives the most

conservative version of dependence information. Due to aliased pointers,

compilers insert a great number of false dependencies into PDG, especially in

languages that allow explicit use of pointer-based references. Limiting the

Chapter 1

- 2 -

analyses that depend on PDG, these false dependencies adversely affect

aggressive optimizations such as parallelization, offloading, and

approximation.

To aggressively optimize programs, modern compilers [3, 5, 7, 13, 19, 21,

23, 25] employ memory profilers that trace dynamic memory dependences

among instructions. Once rarely occurring dependences are identified via

profiling, compilers speculatively remove the rarely occurring dependences

from a program dependence graph (PDG) generating a speculative PDG. With

the speculative PDG, the compilers can support aggressive optimization such

as speculative parallelism. For example, even if independence among

iterations cannot be proven statically, the compilers optimistically exploit

loop-level parallelism when there is no inter-iteration dependence during

profiling [13, 14, 15, 16, 20, 26, 28]. Therefore, generating a precise

speculative PDG with high-coverage is crucial to enlarge aggressive

optimization opportunities.

Context-aware representation is essential for PDG to clarify data

dependencies. Even for the same instruction pairs, data dependence patterns

vary widely depending on the program context, such as a function call site

stack and a loop nest level. Without call site contexts, a PDG cannot

distinguish data accesses of the same functions from different call sites. Then,

a compiler will conservatively insert data dependencies into the PDG between

all the call sites, generating lots of false dependencies. Moreover, in nested

loops, there may exist inter-iteration dependencies between two instructions

- 3 -

in an inner loop, while not in an outer loop. If the PDG cannot distinguish two

different loop contexts, the inter-iteration dependencies will be associated

with both the inner loop and the outer loop. By excluding these false

dependencies, a context-aware PDG gives more precise data dependence

information.

Although many researchers have proposed context-aware memory profilers

that trace dynamic memory dependencies with context information, their tools

suffer from severe overheads in terms of CPU cycles and memory space, and

tracing all memory dependences with their contexts easily become impractical.

In general, profiling memory dependencies greatly increases instruction

counts to identify and record dependencies between instructions that touch the

same memory address. Context awareness exacerbates this problem by

separately treating the same pairs of instructions whose contexts differ. The

profiler of [10], for example, shows over 250 times slowdown (serial version)

because of its significant costs of managing history table whose entries are

associated with loop iterations.

Most existing memory profilers circumvent this problem at the expense of

quality attributes of profiling. Targeting on a few specific optimizations, such

as parallelization, [8, 10, 11, 22, 24] narrow down their scope of context

information into loops, which harms availability of the profiling result to other

optimization clients. Only a few memory profilers [4, 18] log full context

information including function call sites as well as loops, albeit they

compromise their precision by either using compacted context information or

- 4 -

representing dependencies in context granularity. Table 1.1 summarizes and

compares the existing memory profilers.

System
Loop-

Aware

Call Site-

Aware

Full

Coverage of

Dependences

Whole

Program

Coverage

Profiling

Granularity

H. Yu et al. [24] × × Variable

A. Ketterlin et al. [8] × Variable

R. Vanka et al. [22] × × Byte

M. Kim et al. [10] × Byte

T. Chen et al. [4]
Compacted

Call Path × Byte

Y. Sato et al. [18] × Context

CAMP [This thesis] Byte

Table 1.1 Comparison of memory profiling systems

To generate precise context-aware PDGs, this paper proposes a new

compiler-runtime cooperative Context-Aware Memory Profiler (CAMP)

which traces memory dependencies in a byte level granularity. While

preserving full context information, we focus on the instrumentation interface

between static and dynamic analysis, so the former helps the latter to greatly

reduce the overheads of managing contexts. The CAMP compiler statically

generates a context tree which represents all the possible contexts in a PDG,

and provides the CAMP runtime with static context offsets as hints to achieve

- 5 -

dynamic context IDs for every call site and loop. The CAMP runtime

calculates a dynamic context ID with one arithmetic operation between the

current context ID and the static offset, and records a memory access history

with the context ID. Using one dynamic context ID from a simple operation

simplifies the data structure and the algorithm of CAMP, and minimizes its

profiling time and memory overheads.

To further reduce profiling time, this paper also proposes a new

heterogeneous sampling method that does not generate any false positive

dependencies. Since memory profilers collect dependences that really

manifest for given profiling inputs, the full-profiling results do not include

any false positive (there is no dependence, but reported as having one) while

the results may include false negative (there is a dependence, but reported as

none) for non-travelled control flows. However, sampling memory

instructions may yield false positive dependences because the profilers may

link memory reads to wrong memory writes due to absence of memory write

history. To avoid generating any false positive, CAMP adopts different

sampling policies for read and write instructions.

For 12 programs from SPEC CINT2000 and CINT2006 benchmark suites,

CAMP finds that 70.8% of context oblivious profiling results are false positive

on geometric average, and increases DOALL parallelism opportunities by

average 9.7% more than loop-aware only memory profilers. Compared to

CAMP without sampling, CAMP with the heterogeneous sampling reduces the

- 6 -

profiling time by 10.8× (from 197.0× to 18.4× and memory overhead by 40%

(from 2.7GB to 1.6GB) on average without any false positive result.

In summary, the primary contributions of this paper are:

 A compiler-runtime cooperative precise context-aware memory

profiling system with full contexts (called CAMP)

 A static context tree that represents all the possible dynamic contexts

such as function call site stacks and loop nests

 A novel heterogeneous sampling method that does not generate any

false positive dependence

 An in-depth evaluation of CAMP using 12 benchmarks from SPEC

CINT2000 and CINT2006 benchmark suites

The rest of this paper is organized as follows. Chapter 2 gives the motivation

of this research and challenging issues in context-aware dependence profiling.

Chapter 3 describes CAMP compiler and the proposed compiler technique.

Chapter 4 explains the CAMP runtime and its algorithm. Chapter 5 explains

the optimization method such as a novel sampling method which does not

generate any false positive dependency. Chapter 6 discusses the meaning and

the potential application of speculative context-aware PDGs, giving a case

study of discovering hidden parallelism. Chapter 7 shows the evaluation

results, and Chapter 8 contains related work. Finally, Chapter 9 concludes the

thesis.

- 7 -

Motivation

Context-aware dependence profiling is an essential step in building context -

aware PDG. Although a profiler gives information about only specific program

executions, it realizes empirically predictable PDG, often called speculative

PDG. Supporting precise and fine-grained representations, Context-awareness

plays an important role not only in speculative PDGs, but also in dependence

profiling.

This section first motivates context-aware memory profiling and false

positive-free sampling. Section 2.1 shows an example of real life program and

a part of PDG of it, giving an idea of how context information affects data

dependencies between different call sites and loops. It also shows how the

context-awareness increases the precision of a speculative PDG by comparing

with a speculative PDG with context-oblivious memory profiling results.

Section 2.2 illustrates why speculative PDGs of the same function can vary

depending on contexts and how context-awareness increases optimization

opportunities such as uncovering hidden parallelism.

Chapter 2

- 8 -

2.1. Dependence Information Quality: An Example

of a Real Life Program

Compared with a naive context-oblivious profiler, a context-aware profiler

provides concise data dependence information in terms of both quantity and

quality. As an example of a real-life program, Figure 2.2 illustrates parts of

memory dependencies that context-aware and context-oblivious memory

profilers collect for a global variable outcnt in gzip (Figure 2.1). True

dependencies, observed by a context-aware memory profiler, are drawn in blue

lines, whereas false dependencies which occur only from context -oblivious

memory profiling are drawn in red lines. Notice that every pair of

send_bits function calls is correlated by both dependencies.

Compilers will conclude that any send_bits invocation is unable to

reordered or parallelized due to false dependencies. These false dependencies

originate from compiler's conservative assumptions on a single context -

oblivious dependency, i.e. the compiler inserts dependencies on outcnt++

for all the possible combinations of send_bits function calls. Given

context-aware dependencies, the compiler can distinguish call sites of memory

accesses, and prevent from generating false dependencies. Only for the

variable outcnt in the whole program, the context-oblivious memory profiler

claims 1,344,238 false dependencies, while there exist only 499 true memory

dependencies. In addition, context-aware profiler elaborates the dependencies

- 9 -

by classifying it into intra-iteration (solid line) and inter-iteration (dotted line)

with respect to a corresponding loop.

void send_bits(value, length) {

if (bi_valid> (int)size -length) {

bi_buf|= (value << bi_valid);

outbuf[outcnt++] = bi_buf;

bi_buf= (ush)value >> (size -bi_valid);

bi_valid+= length -size;

} else {

bi_buf|= value << bi_valid;

bi_valid+= length;

}

}

void compress_block(ltree, dtree) {

while(lx < last_lit} {

flag = flag_update();

lc= l_buf[lx++];

if (flag == 0) {

send_bits(lc, ltree); // 1

} else {

code = length_code[lc];

send_bits(code, ltree); // 2

extra = get_extra(code);

if (extra != 0) {

lc= get_lc(code);

send_bits(lc, extra); // 3

}

code = d_code(dist);

send_bits(code, dtree); // 4

extra = get_extra(code);

if (extra != 0) {

dist= get_dist(code);

send_bits(dist, extra); // 5

}

}

}

send_bits(END_BLOCK, ltree); // 6

}

Figure 2.1 Pseudo code of compress_block in gzip

- 10 -

Figure 2.2 A part of Speculative Program Dependence Graph of Figure 2.1

2.2. Recording Context Information

A precise speculative PDG with memory profiling results about dynamic

dependences enables modern compilers [3, 5, 7, 13, 19, 21, 23, 25] to support

aggressive optimization that cannot be achieved by static analyses only. For

example, automatic speculative parallelizing compilers [9, 13, 14, 15, 16, 20,

26, 28] collect dynamic dependences in loops, and speculatively parallelize

the loops ignoring rarely occurring dependences that static analysis cannot

remove. Moreover, speculative PDGs help parallelizing compilers produce

robust codes by augmenting fragile static analyses [9].

To draw context-aware dependencies, a profiler should incorporate context

information into records of all memory access events. The dynamic

dependences vary depending on their contexts such as loop nest levels and

- 11 -

function call stacks. Figure2.3 is a simple program which calculates moving

weighted averages for matrices, and Figure 2.4 shows how context information

refines and distinguishes a data dependency between a pair of instructions.

Assuming that tmp1 in function wgtAvgV is held in a register (which is

highly likely), a Read-After-Write (RAW) memory dependency from LD4 to

ST6 occurs only when v1 and v3 are aliased1. For example, ST6 updates

A[t][i] that LD4 reads at the next iteration of Loop L2 in Function call site

F3 (Notice that wgtMovingAvg(A,A) makes v1 and v2 aliased).

Otherwise, the RAW dependency does not exist. As shown in Figure 2.4.3, the

most verbose context information, which considers both loops and call sites,

provides the finest resolution on dependencies. In this regard, the context

information on memory access histories plays a key role in indicating an exact

position of dependencies in speculative context-aware PDG.

A context-oblivious memory profiler that does not track calling context or

loop nest severely limits the applicability of speculative parallelization. For

example, such a profiler may report that there is a memory dependence from

ST6 to LD4 with no available context information. As Figure 2.4.1 illustrates,

since LD4 and ST6 form a cyclic dependence graph with the profiled memory

dependence on A[t][i] and a statically found data dependence on tmp1,

1 Since register dependencies manifest themselves at compile time, we

exclude them from the scope of this paper.

- 12 -

automatic speculative parallelizing compilers are unable to parallelize both

Loop L1 and Loop L2.

Like most existing memory profilers [8, 19, 11, 22, 24], if a memory profiler

is aware of loop nest levels, applicability of the speculative parallelization can

be increased. As Figure 2.4.2 shows, the loop-aware memory profiler reports

that there is an inter-iteration memory dependence from ST6 to LD4 for Loop

L2 but not for Loop L1 because LD4 reads A[t-1][i] that ST6 updates

at the previous invocation of Loop L1. Since there is no cyclic dependence

in a dependence graph for Loop L1, the parallelizing compilers can

parallelize Loop L1 while the compilers still cannot parallelize Loop L2.

Therefore, not to lose this parallelism opportunity on Loop L1, the memory

profiler should record dependences with loop nest levels.

For more aggressive optimization, context information like function call site

stacks is necessary. Instruction 22 and Instruction 24 call the same

function wgtMovingAvg with different arguments such as (A, B) and (A, A),

so wgtMovingAvg has different dependence graphs for each call site. As

Figure 2.4.3 shows, a context-aware memory profiler records memory

dependences for each context including call stacks, and allows compilers to

generate different dependence graphs for loop nest levels and call stacks. As

a result, the compilers can parallelize the outer loop L2 for call site F2 that

cannot be parallelized with loop-aware memory profiling only. Moreover,

context-awareness of memory profiling allows compilers to recognize memory

- 13 -

operations through getter and setter functions from different call sites as

different memory operations, and to more aggressively optimize programs

with mutator functions.

Augmenting context information, however, incurs significant overheads.

Attaching heavy data such as function call stacks, loop nesting information,

and iteration counters to each memory access history is the simplest but almost

infeasible approach. The profiler of [10], instead, utilizes pending and history

tables to trace context changes (loop iteration) of memory accesses within

nested loops. Still, since these tables are managed per loop nest, they cause

significant memory overheads when the loop nests are deep. In [8], the

execution tree tracks and maintains context changes at profiling time. Besides

managing the tree, their profiler needs to compute the latest common execution

point of two memory accesses of a dependency, which also costs significant

computational overheads. Consequently, most context-aware profilers suffer

from serious computational and memory overheads, resulting in unacceptable

profiling times.

- 14 -

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

void wgtAvgV(float *v1, float *v2, float *v3) {

 // Loop L1

 for(int i = 0; i < N ; i++){

 float tmp1 = v1[i]; // LD4

 float tmp2 = v2[i];

 v3[i] = w * tmp1 + (1-w) * tmp2; // ST6

 }

}

void wgtMovingAvg(float **in, float **out) {

 // Loop L2

 for(int t = 1; t < N ; t++){

 // Function Call Site F1

 wgtAvgV(in[t-1], in[t], out[t]);

 }

}

void main() {

 float A[N][N], B[N][N];

 float v[N], w[N];

 // Function Call Site F2

 wgtMovingAvg(A, B);

 // Function Call Site F3

 wgtMovingAvg(A, A);

 // Function Call Site F4

 wgtAvgV(v, w, v);

}

Figure 2.3 Example Program

- 15 -

Figure 2.4.1 Context Oblivious (Loop and Call Site Oblivious)

Figure 2.4.2 Loop Aware (Call Site Oblivious)

Figure 2.4.3 Context Aware (Loop and Call Site Aware)

LD4 | L2 / L1

ST6 | L2 / L1

LD4 | L2

ST6 | L2

Loop L2: Loop L1:

Intra-iteration Dependence

LD4 | F2 / L2

Loop L2 for Call Site F2: Loop L1 for Call Site F2:

Loop L2 for Call Site F3: Loop L1 for Call Site F3:

Inter-iteration Dependence

ST6 | F2 / L2

LD4 | F2 / L2 / F1/ L1

ST6 | F2 / L2 / F1/ L1

LD4 | F3 / L2

ST6 | F3 / L2 ST6 | F3 / L2 / F1 / L1

LD4 | F3 / L2 / F1 / L1

- 16 -

2.3. Observations: Predictable Aspects of Contexts

To address the aforementioned problems, compilers can help profilers to

reduce the cost of dealing context in several ways. A compiler could remove

the need for managing context information by in-lining all function calls and

unrolling loops, unifying all contexts into one; this radical approach seems

plausible, but the size of program code will explode if the program has deep

loop nests or function invocations. As another way to alleviate context

management costs, compilers can provide concise representations for profilers

to efficiently handle contexts at profiling time; since a compiler stati cally

analyzes a target program before inserting instrumentation functions, it can

give hints on how a profiler efficiently represents and computes contexts by

leveraging its prior knowledges of the program.

Based on compiler assistance, we make several observations regarding

predictable aspects of contexts. First, given full access to the source code, we

can statically enumerate every possible context of a program by analyzing

control flow in context granularity. In other words, we can statically construct

a context tree such as Calling Context Tree (CCT) [2, 6, 27] and Loop Call

Context Tree (LCCT) [17, 18], and assign each node a unique context ID.

Second, by using a simple identification methodology on context ID, profilers

can efficiently track these IDs even without carrying the context tree. Third,

as [10] also pointed out, dependencies between iterations often exhibit stride

patterns in both a loop and loop nests. To avoid wasteful duplications of

- 17 -

context information regarding loops, profilers only need to tell whether a

dependency is inter-iteration or intra-iteration, which is sufficient for both

context-aware PDGs and various code optimization clients.

- 18 -

Compiler-assisted Context Management

Though Chapter 2 points out the necessity of context-aware memory profiling,

profiling memory dependences with full contexts suffers from huge profiling

time overheads. To overcome the high profiling overheads, the CAMP

compiler statically analyzes a program before profiling and simplifies context

management of the CAMP runtime.

3.1. Static Context Tree

To efficiently manage the context changes, we proposes a new static context

tree that represents all the possible contexts during the program execution.

Unlike the existing context trees such as Loop Call Context Tree (LCCT) [17,

18] and Calling Context Tree (CCT) [2, 6, 27] that profilers dynamically

generate at profiling time, the CAMP compiler statically generates the context

tree to alleviate context management overheads at profiling time.

The CAMP compiler creates the context tree in two steps; context tree

generation and context ID assignment. At the context tree generation step, the

compiler creates a context tree by inserting a child node for every function call

site and loop invocation. Figure 3.1 shows a context tree for the example code

Chapter 3

- 19 -

in Figure 2.3. The compiler inserts three different children into the main node

for call sites F2, F3 and F4. Here, though call sites F2 and F3 call the same

function wgtMovingAvg, the compiler inserts different context nodes for

each call site, thus generating different context nodes for the same call site F1

and loop invocations L1 and L2 in wgtMovingAvg. As a result, the

context tree can differentiate memory instructions across all the dynamic

contexts.

Figure 3.1 Context tree for the example code in Figure 2.3

main
CtxID: 0

Offset: +0

F2
CtxID: 1

Offset: +1

L2
CtxID: 2
Offset: +1

F1 CtxID: 3
Offset: +1

L1 CtxID: 4
Offset: +1

F3
CtxID: 5

Offset: +5

L2 CtxID: 6
Offset: +1

F1 CtxID: 7
Offset: +1

L1 CtxID: 8
Offset: +1

F4
CtxID: 9
Offset: +9

L1 CtxID: 10
Offset: +1

- 20 -

At the context ID assignment step, the CAMP compiler assigns a unique

context ID to each context node. Since there can exist multiple context nodes

for the same call site and loop invocation such as F1, L1 and L2 depending

on the dynamically determined context stack, the compiler needs to assign

different context IDs at the same static call site and loop invocation codes.

Addressing the problem, the compiler assigns context IDs as a unique path

sum where each call site and loop invocation has the same static offset, and

calculates the context IDs and their static offset with pre -order tree traversal.

Figure 3.1 shows context IDs and their static offsets for the context tree.

Though L1 is invoked in multiple contexts with different IDs such as 4, 8 and

10, its static offset from its parent contexts is one value, +1. The CAMP

profiler dynamically calculates the context IDs by adding the static off set to

the current context ID.

While the CAMP compiler creates a context tree for most cases, there are two

special cases that require special manipulation; recursive function call and

indirect function call. In contrast to dynamically created context trees, static

context trees are ignorant of recursion depth and the target function that a

function pointer points to. So, the CAMP compiler marks recursive functions

(including mutually recursive functions) before generating the context tree,

and inserts only the first recursive function call site as a leaf loop context node,

preventing from generating a context tree infinitely. Here, the compiler

considers the recursive function call site node as a loop node, so the CAMP

profiler can find its recursion depth by counting iteration numbers. For indirect

- 21 -

function calls, the compiler analyzes all the possible target candidates and

inserts the candidates as children nodes.2 Figure 3.2.1 shows an example code

with recursive function calls and indirect function calls. Figure 3.2.2

illustrates that the compiler adds call site F3 as a leaf node due to recursive

function calls between is_even and is_odd, and inserts all the possible

indirect call candidates such as inc and dec for call site F4.

2 Given full access to the source code, the CAMP compiler determines the

candidates by matching type signatures of all functions.

- 22 -

Figure 3.2.1 Recursive/indirect function call example

Figure 3.2.2 Context tree for Figure 3.2.1

bool is_even(unsigned int n) {

 if (n==0) return true;

 else return is_odd(n-1); // Call Site F1

}

bool is_odd(unsigned int n) {

 if (n==0) return false;

 else return is_even(n-1); // Call Site F2

}

void main() {

 int (*fPtr)(int);

 if(is_even(n)) // Call Site F3

 fPtr = &inc;

 else

 fPtr = &dec;

 fPtr(n); // Call Site F4

}

int inc(int n) {

 return n+1;

}

int dec(int n) {

 return n-1;

}

- 23 -

3.2. Context Management and Profiling Code

Generation

To track context changes, CAMP instruments not only memory accesses but

also function calls and loops. During the program execution, contexts such as

function call site stacks and loop nests are continuously changing. To reduce

context management overheads, the CAMP compiler statically finds the

context changing points such as entries and exits of the functions, loop

invocations and loop iterations, and inserts instructions to notify the CAMP

runtime of the context changes. Followings are the context changing notifiers,

and Figure 3.3 shows how the CAMP compiler inserts the notifiers to the

example in Figure 2.3.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

void wgtAvgV(float *v1, float *v2, float *v3) {

 begin_loop(+1);

 for(int i = 0; i < N ; i++){

 profiling_load(&v1[i]);

 float tmp1 = v1[i];

 profiling_load(&v2[i]);

 float tmp2 = v2[i];

 profiling_store(&v3[i]);

 v3[i] = w * tmp1 + (1-w) * tmp2;

 next_iteration();

 }

 end_loop(-1);

}

- 24 -

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

void wgtMovingAvg(float **in, float **out) {

 begin_loop(+1);

 for(int t = 1; t < N ; t++){

 profiling_load(&in[t-1]);

 profiling_load(&in[t]);

 profiling_load(&out[t]);

 begin_function(+1);

 wgtAvgV(in[t-1], in[t], out[t]);

 end_function(-1);

 next_iteration();

 }

 end_loop(-1);

}

void main() {

 float A[N][N], B[N][N];

 float v[N], w[N];

 begin_function(+1);

 wgtMovingAvg(A, B);

 end_function(-1);

 begin_function(+5);

 wgtMovingAvg(A, A);

 end_function(-5);

 begin_function(+9);

 wgtAvgV(v, w, v);

 end_function(-9);

}

Figure 3.3 Transformed program by the CAMP compiler for the program

in Figure 2.3. Bold lines are added by the CAMP compiler.

 begin_function/begin_loop(offset) notifies the beginning of a new

context to the CAMP profiler with offset. The profiler calculates the new

- 25 -

context ID by adding the offset to the current context ID. If a loop context

begins, the profiler pushes an iteration counter to the iteration counter

stack that has iteration counts of loop nests.

 end_function/begin_loop(offset) notifies the end of the current context

to the profiler with offset. The profiler restores the previous context ID by

adding the offset to the current context ID. If a loop context ends, the

profiler pops the iteration counter from the iteration counter stack.

 next_iteration() notifies the iteration change to the CAMP profiler.

Since only the loop context at top of the stack (i.e., the inner most loop)

can iterate, there is no argument in this mark. The profiler increases the

iteration counter at the top.

With the context changing notifiers, the CAMP runtime efficiently reflects

context changes and updates context IDs during the program execution.

Since the most recently called function returns first, and the most recently

entered loop (inner-most loop) exits first, programs change their contexts

following the LIFO rule. As a result CAMP manages the dynamic context ID

by adding or subtracting the context offset into and from the current context

ID according to the context changes. For example, when a program enters

(exits) a function and a loop nest, the context manager adds (subtract) the

- 26 -

context offset into (from) the current context ID. To manage dependencies in

the iterated contexts, CAMP has a global iteration counter stack which keeps

how many times each context in the context stack iterates. For every loop

iteration, CAMP changes the iteration information in the corresponding

iteration counter.

- 27 -

Context-Aware Memory Profiling

The CAMP runtime mainly consists of three components: current context,

dependence table and history table. This chapter describes the overall

algorithm of context-aware memory profiling and each component of the

runtime in details.

4.1. Overall Algorithm of Context-Aware Memory

Profiling

CAMP runtime incorporates a context into every single dependency. A

dynamic instruction instance has its context that represents function call site

stacks and iteration information of nested loops when the instruction is

executed. When CAMP generates a dependency, it needs to merge the

instruction context into a dependence context that represents the context where

the dependency is valid. For example, an inter-iteration RAW dependency in

Figure 2.4.3 is valid at Loop L2 invoked by F3, but is not valid at Loop L2

invoked by F2 nor Loop L3. Therefore, when adding the inter-iteration

Chapter 4

- 28 -

dependency, CAMP should record its valid context such as Loop L2 invoked

by F3.

Figure 4.1 describes how the CAMP runtime generates dependencies with

valid contexts. When an instruction accesses a memory location, the runtime

receives the memory address and instruction ID, and has the current context

ID and iteration counts of nested loops. First, the CAMP runtime searches

previous memory instructions that access the same memory address from its

history table (Line 1), and generates unique dependence IDs from the

instruction IDs and context IDs of the current instruction and all the previous

instructions (Line 2).Since the dependence ID reflects instructions and their

contexts, CAMP can differentiate dependencies with contexts. Moreover, the

dependence ID enables us to infer its dependence type such as RAR, RAW,

WAR and WAW because the instruction IDs involve their instruction types

such as load and store. Then, the CAMP runtime calculates iterative relation

of the dependency by comparing each iteration count in the iteration stacks

(Line 4-10). Since the iterative relation is valid only in the same loop

invocation, the runtime stops the comparison if the iteration counts of the two

instructions are different. To avoid inserting redundant dependencies, the

runtime inspects the existence of the same dependencies in the dependence

table (Line 11-20). If there exists the same dependencies with the same

context, the runtime merges the iterative relations of the current and the

existing dependencies. For example, if one dependency has inter-iteration

relation and the other one has intra-iteration relation, the CAMP runtime marks

- 29 -

Figure 4.1 Context-aware Dependence Generation Algorithm

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Data: addr: accessed address

Data: dstID: accessed instruction ID

Data: dstCtx: current context ID

Data: dstIterStack: current iteration stack

/* Generate Dependences */

foreach (srcID, srcCtx, srcIterStack) ∈ getHistory(addr) do

let depID = genDependenceID(srcID, srcCtx, dstID, dstCtx);

let deptIter = NULL;

foreach level = 0 to minStackLevel(srcIterStack, dstIterStack) do

if srcIterStack[level] == dstIterStack[level] then

depIter[level] = INTRA;

else

depIter[level] = INTER;

break;

end

 end

 let dep = genDependence(depID);

 if dep == NULL then

 insertDependence(depID, depIter);

 else

 let oldDepIter = getDependenceIter(dep);

 foreach level = 0 to maxStackLevel(oldDepIter, depIter) do

 depIter[level] = oldDepIter[level] | depIter[level] ;

 end

 updateDependence(depID, depIter);

 end

end

/* Update History Tables */

if dstID == STORE then

replaceHistoryElement(addr, dstID, dstCtx, dstIterStack);

clearLoadHistory(addr);

else

 addHistoryElement(addr, dstID, dstCtx, dstIterStack);

end

- 30 -

the dependency as mixed.

After generating the dependency, the CAMP runtime updates the history table

with the new instruction. (Line 22-28). If the current instruction is a load, the

runtime simply adds the current instruction and its context in the load history

table. Whereas, if the current instruction is a store, the runtime does not only

replace the element in the store history table with the current instruction and

its context, but also clears elements in the load history table because a WAR

dependency is the relation between the current store and all the previous loads

after the last store instruction.

4.2. Memory Event with Context

In addition to context changing notifiers, the CAMP compiler finds all the

memory related instructions such as loads, stores, memory allocation, memory

deallocation, and memory sets, and inserts the instructions to notify the CAMP

runtime of execution of the memory related instructions. To efficiently manage

the dependence table, the compiler statically and sequentially assigns numbers

to all the load and store instructions. Since the compiler knows the total

number of load and store instructions, the runtime can allocate an array for the

dependence table and use the ID as an index.

Figure 4.2(1) shows how the CAMP runtime creates memory instruction

context from the memory event and the current context using the example code

- 31 -

in Figure 3.3 and the context tree in Figure 3.1. When Instruction 4

accesses A[1][0] at L1 called by F1, L2 and F3, a memory event is notified

with a memory instruction (LD4) and its memory address (A[1][0]). The

runtime merges the instruction with context ID (Ctx8) and iteration counters

(2/1), and generates a memory instruction context as 4:Ctx8(2/1). The

generated instruction context will be used in the history table and dependence

generation.

- 32 -

Figure 4.2 Structure of the CAMP runtime and its operation example on the

program in Figure 3.3.3

3 In the context, the number in left-most position means instruction ID, and the numbers after

the context ID (Ctx8) are iteration counts of nested loops. In the dependence table element,

the right half indicates loop iteration relation (I and X mean 'INTRA' and 'INTER',

respectively). Updated elements by the operations in the figure are shaded in grey.

- 33 -

4.3. Dependence Table

While executing programs, the CAMP runtime directly generates RAW,

WAR and WAW dependencies and records the dependencies in the

dependence table. Since the CAMP compiler lets the CAMP runtime know the

total number of load and store instructions, the runtime allocates the

dependence table as an array indexed by destination ID. Since different

dependencies can share the same destination instruction, multiple

dependencies can be stored in each element in the dependence table, so the

runtime uses linked lists for each destination.

Figure 4.2(2) shows how the CAMP runtime generates a RAW dependency

and stores the dependency in the dependence table from the example code in

Figure 3.3. Given the instruction context (4:Ctx8(2/1)) and memory

address (A[1][0]), the runtime looks up the history table for the same

address, and finds a store context (6:Ctx8(1/1)). With the two instruction

contexts, the runtime generates a context-aware dependency according to

algorithm in Figure 4.1. Since the iteration counts are different at L2, the

iterative relation is valid up to L2, and L2 is marked as an inter-iteration

dependence. Here, the CAMP runtime can safely ignore F1 and L1 contexts

because the dependency exists only across different invocations for F1 and L1

and does not affect instruction reordering in wgtAvgV and Loop L1.

- 34 -

4.4. History Table

The CAMP runtime has load and store history tables that keep previously

accessed load and store instructions for each memory location. Whenever a

memory instruction accesses a memory location, the runtime looks up the

access history from the history tables, generates dependencies between the

current instruction and all the previous instructions in the history tables, and

updates the history tables with the current instruction.

Figure 4.2(3) shows how the CAMP runtime updates the history table on the

memory event. After updating the dependence table, the runtime updates the

history table with the new memory event. If the current memory event is a load

like 4:Ctx8(2/1), the runtime simply adds the instruction context in the

load history table. Thus, there can exist more than one load instruction context

for the same memory address in the load history table. However, if the current

memory event is a store, the runtime replaces the element in the store history

table to the instruction context, so there exists at most one instruction context

for each memory address in the store history table. Moreover, a store memory

event clears elements in the load history table. This clearance allows the

runtime not to generate false WAR dependences between the current store

instruction and a load instruction before the previous store instruction.

The history tables are implemented in shadow memory. It is logically

orthogonal to original application address space. By mirroring the application

address space, it enables the runtime to efficiently record and retrieve memory

- 35 -

access histories. When a memory address is accessed, the runtime calculates

the corresponding shadow address simply with a few bit operations. A history

data like 4:Ctx8(2/1) can be found at these shadow addresses. In an on-

demand fashion, the shadow memory is reactively allocated and freed at a page

granularity, sparing lots of memory space. This idea of shadow memory is

similar to the ones in [4, 8].

- 36 -

Heterogeneous Sampling in CAMP

Memory profilers are very sensitive to false positives that affect compiler

optimization. Since memory profilers collect dependences only for given

profiling inputs, profiling results always involve false negative for non-

travelled control flows. Thus, when compilers aggressively optimize programs

with the profiling results, the compilers assume that false negative

dependences can manifest at run-time. However, since the memory profilers

collect dependences that really manifest, profiling does not generate any false

positive dependence ideally, and compilers do not assume a false positive

dependence in their optimization. Therefore, profiling optimization that can

introduce false positive results may significantly affect compiler analysis and

optimization.

To further optimize our profiling method, we propose a heterogeneous

sampling method which employs two different sampling patterns together;

random sampling and consecutive sampling. Since major overheads of

profiling are associated with loops, we apply these two sampling methods only

inside loops. Random sampling is to randomly choose loop iterations where

all memory instructions are instrumented. Whenever CAMP encounters a new

Chapter 5

- 37 -

iteration (i.e. next_iteration()), it randomly decides whether the

iteration should be inspected, according to the predetermined random sampling

ratio. Consecutive sampling, whereas, takes into account first several

iterations of a loop to be instrumented. Dependence patterns in loops are

usually straightforward (they often occurs consecutively, or in stride patterns.),

so they are detectable in first several iterations. By taking advantage of this

property, consecutive sampling catches most of regular dependencies in loops

at an early stage, easing the burdens of random sampling later. To avoid

exhaustive loop profiling, we apply these two different sampling method

together in choosing which iterations to be inspected, yet finding most of

dependencies in loops.

To avoid generating false positive dependencies, CAMP applies different

sampling policies to memory reads and writes. Figure 5.1 shows how a careless

sampling policy introduces false positive dependencies. Notice tha t only

sampling memory write instructions introduces false positive because the

absence of up-to-date memory write history can make a memory profiler

generate a dependency with a wrong memory write instruction. For example,

the absence of ST2 leaves the memory write history on Address A not

updated. Thus, the profiler generates dependencies with ST1 instead of ST2

for following memory instructions, and newly introduces false positive such

as WAW(ST1->ST3) and RAW(ST1->LD2) that are red lines in Figure

5.1(c). To prevent this situation, CAMP updates history tables for all the

memory writes. In other words, for non-sampled memory reads, it skips all the

- 38 -

Table 5.1 Heterogeneous sampling for read and write

three steps of the routine in Figure 4.2. Whereas, for non-sampled memory

writes, it skips only the dependence table update step. Since the number of

memory writes is smaller than the number of reads, and updating the history

tables is cheaper than updating dependence tables, CAMP prevents any false

positive dependency without sacrificing much of the performance. Table 5.1

summarizes CAMP sampling policies.

Operations

Sampled Not Sampled

Read Write Read Write

Context Creation ×
History Table Update ×

Dependence Table Update × ×

- 39 -

(b) Full profiling result

(c) Sampled profiling result

store A; //ST1, sampled

load A; //LD1, not sampled

store A; //ST2, not sampled

load A; //LD2, sampled

store A; //ST3,sampled

(a) Sequence of memory instructions

Figure 5.1 Dependences from full profiling and sampled profiling.4

4 Grey means false negative, and red means false positive

WAR

WAW

WAW

RAW

WAR

ST2

LD1

WAW

RAW

RAW

- 40 -

Context-Aware PDGs and

Optimization Opportunities

 By excluding a large number of false dependencies, CAMP helps a compiler

to generate much more concise context-aware PDGs than a context-obvious

profiler. Since a program often manipulates memory values through accessor

functions such as getter and setter functions across all the program points,

context-oblivious profiling forces compilers to conservatively insert

dependencies into a context-aware PDG for all the combinations between

getters and setters, spawning lots of false dependencies. Preventing such faults,

CAMP allows compilers to distinguish memory accesses at different call sites.

Figure 6.1 shows the ratios of false dependencies that CAMP finds from

context oblivious memory profiling results. Here, the false dependencies are

exactly the same concept of the red edges in Figure 2.2. We find that 70.8%

of context oblivious memory profiling results for 12 programs are false.

In order to show their potential of context-aware speculative PDGs, this work

performs a case study for an aggressive optimization, namely speculative

Chapter 6

- 41 -

parallelism. Even if independence among iterations cannot be proven

statically, this technique optimistically exploits loop-level parallelism when

no inter-iteration dependency is exposed during profiling. It serves as a

foundational technology for many automatic parallelizing compilers. More

details are in [9, 13, 14, 15, 16, 20, 26, 28]. To see how much CAMP increases

parallelism opportunities, we compare two numbers of parallelizable loops in

the programs; one is estimated by CAMP and the other is estimated by a loop-

aware only memory profiler (LAMP). A loop is considered as a parallelizable

loop if the loop does not have any inter-iteration control, register and memory

dependency except on induction variables. For simplicity, we only consider

DOALL parallelism in this case study. Here, the LAMP profiler is equivalent

to a CAMP profiler without function call-site awareness.

Figure 6.2 shows the increment of parallelizable loops by CAMP against

LAMP. Compared with LAMP, CAMP increases parallelizable loops by 9.7%

on average and by up to 54.2% (401.bzip2). As CAMP provides more

concise dependence information, our compiler finds additional loops that is

free of inter-iteration dependencies in most cases. These additional loops were

considered to be not parallelizable by LAMP because, for example, functions

that touches memory variables are invoked inside their loop body, or a single

instance of them actually has an inter-iteration dependency in a certain context.

Thanks to context-aware PDG, our compiler corrects these misjudgments by

accepting more diversified contexts of a loop. CAMP, however, fails to

increase parallelism opportunities for 177.mesa and 462.libquantum

- 42 -

because the programs have regular memory access patterns for LAMP enough

to find parallelizable loops. CAMP also fails to increase parallelism for

188.ammp and 429.mcf because CAMP creates context trees with a small

number of context nodes due to recursive calls.

- 43 -

Figure 6.1 Ratio of false dependencies that CAMP finds from context

oblivious memory profiling results

Figure 6.2 Increment of DOALL parallelizable loops

with CAMP compared to LAMP

- 44 -

Performance and Sampling Accuracy

We implemented the CAMP compiler and runtime on top of the LLVM

compiler infrastructure [12] (revision 242,220). It is evaluated with 12

general-purposed programs in the SPEC CINT2000 and CINT2006 benchmark

suites [1]. All the evaluations were done natively on an Intel® Core™ i7-4770

machine that has 4 cores running at 3.40GHz and 16 GB of RAM. The

programs were compiled with the -O3 optimization flag.

Table 7.1 lists the evaluated programs along with information such as brief

description and statistics on static and dynamic profiled contexts and memory

instructions. Details about each program can be found in [1]. The numbers

of loops and call sites in the programs range from 153 (429.mcf) to 6,292

(464.h264ref), and the numbers of executed memory instructions also

range from 101 million (164.gzip) to 13 billion (179.art).

Chapter 7

- 45 -

Table 7.1 Benchmark details.5

7.1. Time and Memory Overheads of CAMP

Figure 7.1 shows the whole program profiling time and memory overheads

of CAMP. Bases are the execution time and memory usage of the original

program without profiling. This paper evaluates a context -oblivious profiler,

CAMP without sampling and CAMP with various sampling conditions to

analyze the overheads of context-awareness and the effectiveness of the

proposed heterogeneous sampling. Here, the context-oblivious profiler is

equivalent to CAMP profiler without context-awareness. CAMP with

sampling profiles memory instructions at a few initial iterations and randomly

5 M in the numbers of dynamic instances means millions.

Benchmark

of Static Instances # of Dynamic Instances

Functions Loops
Call

Sites
Loads Stores Calls

Loop

Invo.
Loads Stores

164.gzip 70 200 462 1191 1134 5M 1M 69M 32M

175.vpr 155 482 2299 4250 1336 113M 50M 2118M 573M

177.mesa 1019 1340 4827 16594 11744 3913M 8M 5356M 3751M

179.art 26 132 274 674 282 71M 255M 9810M 3359M

188.ammp 179 461 1453 4031 1336 183M 95M 6618M 1680M

300.twolf 190 1082 2294 10585 3773 12M 20M 407M 125M

401.bzip2 69 301 487 2514 1662 41M 101M 1116M 267M

429.mcf 24 58 95 372 292 3M 81M 1198M 138M

433.milc 235 329 2680 3498 1064 47M 7M 1505M 439M

456.hmmer 467 1124 5168 9739 4594 64M 47M 3316M 1853M

462.libquantum 95 119 568 646 345 182M 77M 5366M 2089M

- 46 -

selected iterations of each loop, and all the memory instructions that are not

in a loop.

(a) Profiling time normalized to native program execution

(b) Memory usage

Figure 7.1 Profiling time and memory overheads.6

6 Here, context-oblivious, CAMP, and CAMP (4% + 8) mean CAMP profiler

- 47 -

Figure 7.1 shows that CAMP without sampling suffers from 197.0× profiling

time and 2.7GB memory overheads on average. Compared to context oblivious

profiler, the context-awareness increases profiling time and memory usage by

1.9× and 1.6× respectively. Most of the increased overheads come from

generating additional dependencies between the same instructions with

different contexts that the context oblivious profiler cannot distinguish, while

context management overheads are negligible. Sampling dramatically reduces

the profiling time and memory overheads. CAMP that samples memory

instructions at initial 4 iterations and 1% randomly selected iterations shows

18.4× profiling time and 1.6GB memory overheads.

For 188.ammp, there is almost no profiling time and memory overhead

difference across context oblivious, CAMP and CAMP with sampling. The

main function of 188.ammp invokes a recursive function call,

read_eval_do, in which most of the program is executed. Since CAMP

considers a recursive function call site as a leaf node of a context tree, CAMP

creates only 7 context nodes for 188.ammp, and profiles most of memory

instructions with the same context like context oblivious profiling as a

consequence. For other programs with recursive function calls such as

without context awareness, CAMP profiler without sampling, and CAMP

profiler that samples memory instructions at initial 8 iterations and 4%

randomly selected iterations of each loop respectively. CAMP (4% + 8) also

profiles all the memory instructions not in a loop.

- 48 -

177.mesa, 300.twolf, 429.mcf, 456.hmmer and 462.libquantum,

CAMP creates effective context trees and generates precise profiling results.

429.mcf suffers from high memory overheads compared to others. CAMP

creates history tables in page size granularity to amortize history table creation

overheads with spatial locality. Unfortunately, since 429.mcf sparsely

touches memory spaces that span over the page size, CAMP repeatedly and

inefficiently creates the history tables instead of reusing existing tables, so

CAMP suffers from significant memory overheads for 429.mcf.

7.2. Sampling Accuracy

While sampling memory operations reduces profiling time and memory

overheads, sampling compromises precision and sensitivity. To evaluate

precision and sensitivity of the proposed heterogeneous sampling, this work

measures false positive and false negative of different sampling ratios. Here,

precision is the fraction of sampled dependencies that really exist, while

sensitivity is the fraction of real dependencies that are sampled. The preci sion

and sensitivity are calculated by equation 7.1. The heterogeneous sampling

adopts two different sampling methods such as a consecutive profiling that

profiles only a few consecutive initial iterations and a random sampling that

profiles randomly selected iterations. CAMP (4% + 8) means that all the

memory instructions at initial 8 consecutive iterations and 4% randomly

selected iterations of each loop are profiled. The heterogeneous sampling

- 49 -

profiles all the memory instructions not in a loop because the instructions are

not repetitive.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + # 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + # 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

Equation 7.1. Precision and Sensitivity of Sampling

- 50 -

For all the programs and sampling ratios without any exception, CAMP does

not generate any false positive dependency, thus showing 100% precision.

Since the heterogeneous sampling updates history tables for all the writes,

CAMP correctly finds corresponding memory write history elements for each

memory operations. Though the heterogeneous sampling updates history

tables for all the writes to guarantee 100% precision, Figure 7.1(a) shows that

the sampling still dramatically reduces the profiling time by 10.8×.

The heterogeneous sampling also increases sensitivity by efficiently tracing

regular and irregular memory access patterns. Figure 7.2 and Figure 7.1(a)

illustrate sensitivity and profiling time of the heterogeneous sampling with

different sampling ratios. Profiling a few consecutive initial iterations largely

increases the sensitivity by tracing regular memory accesses among

consecutive iterations that the random sampling could miss, while the

additional consecutive profiling incurs only a small profiling time increase.

For example, compared with 1% random sampling only, the additional

consecutive sampling for 4 initial consecutive iterations increases the

sensitivity by 16.1% at the expense of only 5.0% profiling time increase.

- 51 -

Figure 7.2 Sensitivity of CAMP with different sampling ratios.7

7 Here, precision of CAMP is not illustrated as a graph because the sampling

results show 100% precision for all the programs and sampling ratios.

- 52 -

Related Work

8.1. Context-Aware Memory Profilers

Like CAMP, context-aware memory profilers [4, 18] generate memory

dependencies with their contexts such as function call stacks and loop nests.

However, none of them fully generates the memory dependencies between all

the instructions in a program.

T. Chen et al. [4] made full-transitive data dependence profiler using a unified

load/store history table. Since the history table only records the most recent

memory instruction, the profiler only generate dependencies between the

current memory instruction and the most recent memory instruction on the

same memory, and the compiler reconstructs full memory dependencies from

the profiling results with transitive relationship. However, since an instruction

can touch multiple memory addresses, the reconstruction can generate false

positive results. Moreover, while the profiler uses the expensive hash function

to access the elements in the table, CAMP accesses the elements in the history

tables in a few bitwise operations that require much less performance overhead.

Chapter 8

- 53 -

Y. Sato et al. [18] generated dependences between code regions such as loops

and functions instead of instructions. Since there is no information about

dependences between instructions in the profiling results, the profiling results

limit speculative compiler optimization. Moreover, the profiler only generate

RAW dependences, so reordering instructions without renaming is limited.

8.2. Loop-Aware Memory Profilers

Loop-aware memory profilers [8, 10, 11, 22, 24] trace memory dependences

only with loop contexts. Although the profilers find inter-iteration and intra

iteration dependences like CAMP, they cannot distinguish dependences from

different function call stacks.

J. R. Larus [11] proposed automatic parallelization system using a loop-aware

memory profiler. The system checks inter-iteration dependences but does not

check intra-iteration dependences. Due to its inefficient memory access

history management, the profiler suffers from severe memory overhead and

time overhead.

M. Kim et al. [10] proposed SD3 profiler that is a parallel memory profiler.

SD3 reduces profiling time overhead with parallel profiling, and also reduces

memory usage overhead with data compression using frequent loop-stride

characteristics of computational program. Since each memory dependence

generation in CAMP is independent of each other if they access different

- 54 -

memory address, CAMP also can be parallelized like SD3, and additional

profiling overhead reduction can be achieved.

H. Yu et al. [24] proposed an object-based dependence profiler. The profiler

attaches tags to variables that have access history on the variables. This work

profiles a target loop instead of the whole program, so users should execute

the profiler multiple times to optimize multiple regions in a program.

R. Vanka et al. [22] proposed a set-based dependence profiler using software

signatures. The profiler statically finds relevant dependences that are required

for optimization, and profiles the instructions. Although the profiler has low

time overhead, the profiling results can be incorrect because the tool profiles

only pre-selected instruction sets.

A. Ketterlin et al. [8] optimized profiling overhead using two main techniques:

coalescing consecutive accesses and parameterizing loop nests. The profiler

treats consecutive data structures like arrays as a single entity. In other words,

the profiler supports variable profiling granularity for consecutive data

structure. Parameterizing loop nests reduces profiling overheads exploiting

static control loops where all the memory accesses are determined only by

parameters of the loops.

- 55 -

8.3. Context Management in Profilers

Context management of CAMP is highly inspired by previous context-aware

performance profilers [2, 6, 27]. G. Ammons et al. [2] first introduced a call

tree in which each node reflects a call site. Adaptive calling context tree

profilers [6, 27] support sampling-based calling context management to reduce

performance overhead. Unlike the previous profilers [2, 6, 27], CAMP

constructs a context tree for every function call site and loop invocation. Since

the context of CAMP reflects not only call sites but also loop nests, CAMP

additionally has an iteration stack to store iteration counts of each loop in a

loop nest.

- 56 -

Conclusion

In order to make precise context-aware PDGs, this paper proposes a context-

aware memory profiler (CAMP) which traces memory dependencies with their

full context information. As a compiler-runtime cooperative system, CAMP

utilizes a static context tree to make concise representations for every

obtainable context in a program. At profiling time, these concise

representations enable efficient discovery of context-aware dependencies.

Regarding the resultant PDGs, CAMP discovers that 70.8% of total

dependencies that a context oblivious profiler makes are false; it allows us to

deny a significant number of false dependencies which stem from ignorance

of contexts, thus resulting in more precise PDGs. Through a case study, we

show that how a precise context-aware PDG facilitates a compiler optimization

such as speculative parallelism. With the heterogeneous sampling method,

CAMP finds 73.3% of all possible memory dependencies at the finest

granularity (i.e. instruction-pairwise and byte-level), while suffering from

only 18.4 × slowdown for 12 programs from SPEC, which is considered

acceptable in practice.

Chapter 9

- 57 -

요약문

프로그램에 존재하는 데이터와 컨트롤의 의존관계를 표현하는

Program Dependence Graph(PDG)는 프로그램 분석에 있어서

핵심적인 역할을 해왔다. 특히, 프로파일링(profiling)에 의해

동적으로 생성된 Speculative PDG 는 자동 병렬화(automatic

parallelization)와 같은 공격적인 최적화 기법에 필수적으로 쓰인다.

예컨대, [9, 13]에서는 루프에 존재하는 동적 의존 관계를 메모리

프로파일러로 측정하여, 런타임에 자주 발생하지 않는 의존 관계를

무시함으로써 프로그램을 병렬화 하였다.

그런데 PDG 를 프로파일러가 동적으로 생성할 때에는, 함수 호출

위치(function call site)와 루프와 같은 콘텍스트(context) 정보를

담고 있어야 더욱 정확한 PDG 를 만들 수 있다. 만일 콘텍스트

정보가 없으면 다른 콘텍스트에서 실행된 같은 명령어 쌍을 구분할

수 없게 되어 수 많은 거짓 의존관계를 낳게 된다. 예컨대, 루프에

대한 콘텍스트 정보가 없다면, 루프 반복 구간 안에서 발생하는

의존 관계(intra-iteration dependency) 와 반복 구간 사이에

- 58 -

발생하는 의존 관계(inter-iteration dependency)를 구분할 수 없게

된다. 이와 같은 문제를 해결하기 위해서는 콘텍스트를 인지하는

(context-aware) 프로파일러를 만들어야 한다.

본 연구에서는 더욱 정확한 PDG를 생성하기 위해, 콘텍스트를 인

지하는 프로파일러인 CAMP를 제안한다. CAMP는 프로그램에서 발

생하는 모든 메모리 의존 관계를 byte 단위로 측정하며, 각 의존

관계마다 모든 콘텍스트 정보를 빠짐없이 기록한다. CAMP 컴파일

러는 프로그램의 구조를 정적으로 분석하여, 프로그램에서 존재할

수 있는 모든 콘텍스트를 표현하는 콘텍스트 트리(Context Tree)를

만드는데, 이는 CAMP의 런타임 시스템이 단 하나의 동적 콘텍스트

ID만으로 다양한 콘텍스트를 계산하는 것을 가능케 한다. CAMP 런

타임은 프로그램의 실행 콘텍스트가 변화할 때마다 동적 콘텍스트

ID에 정적 콘텍스트 ID를 더하는 간단한 산술연산을 한번만 취함으

로써 바뀐 콘텍스트를 계산한다. 새로운 콘텍스트에서 읽기(load),

쓰기(store)와 같은 메모리 접근이 관측되면 해당 메모리 주소에 접

근한 과거 기록을 사용하여 메모리 의존 관계를 계산하며 그 결과

를 콘텍스트와 함께 저장한다. 결과적으로, 콘텍스트 트리는 CAMP

의 프로파일링 시간을 단축시키고 메모리 오버헤드를 완화하는데

핵심적인 역할을 한다.

- 59 -

프로파일링 오버헤드를 추가적으로 줄이기 위해서 CAMP 는 두

가지 샘플링 기법을 결합하여 사용한다. 첫 번째 샘플링 기법은

루프의 반복 구간을 무작위로 선정하여 선정된 구간에서만 메모리

접근을 관측하는 무작위 샘플링(random sampling)이다. 두 번째

샘플링 기법은 루프의 처음 반복 구간 몇 차례만 관측하여 루프에

존재하는 줄무늬(stripe) 패턴의 의존 관계를 찾아내는 연속적

샘플링(consecutive sampling)이다. 두 샘플링 기법을 결합하여

사용함으로써 루프에 존재하는 대부분의 의존관계를 찾아 내었다.

또한, 거짓 양성(false positive)이 발생하는 것을 방지하기 위해,

샘플링 여부와 상관없이 쓰기(store) 연산이 발생하면 메모리 접근

기록 테이블 (History Table)을 초기화 하였다.

SPEC 벤치마크[1]에 대하여 실험한 결과, CAMP 를 사용하면 의존

관계를 더욱 정확히 찾아낼 수 있을 뿐만 아니라 더 많은 루프를

병렬화 할 수 있다. CAMP 는 콘텍스트를 인지하지 못하는

(context-oblivious) 프로파일러가 만들어내는 모든 의존 관계 중

약 70.8%가 거짓(false positive)이라는 것을 밝혀냈다. CAMP 를

사용하면 PDG 를 더욱 간결하고 정확하게 나타낼 수 있고, 이렇게

생성된 PDG 를 사용하면 병렬화가 가능한 루프를 9.7%만큼 추가로

찾아 낼 수 있다. 401.bzip2 의 경우에는 병렬화 할 수 있는 루프가

54.2%만큼 증가한다.

- 60 -

이 연구의 주요 성과를 요약하면 다음과 같다.

 프로그램에 존재하는 의존관계를 콘텍스트 정보 손실 없이

관측할 수 있도록 프로파일러를 만듦

 컴파일러의 정적 분석(static analysis)을 통해 프로그램에

존재할 수 있는 모든 콘텍스트를 간략하게 표현할 수 있는

콘텍스트 트리 개발하였고 이것으로 프로파일링 오버헤드를

완화시킴.

 서로 다른 샘플링 기법을 결합하여 거짓 양성 관측 없이

대부분의 의존관계를 찾아낼 수 있는 새로운 샘플링 기법 제안

 SPEC INT2000 과 SPEC2006 을 사용한 심층 분석을 토대로

콘텍스트 정보를 포함한 speculative PDG 의 장점을 분석

- 61 -

REFERENCES

[1] Standard Performance Evaluation Corporation. http://www.spec.org.

[2] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware performance counters with flow and

context sensitive profiling. In Proceedings of the ACM SIGPLAN 1997 Conference on

Programming Language Design and Implementation, 1997.

[3] M. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. August. Revisiting the sequential

programming model for multi-core. In Proceedings of the 40th Annual IEEE/ACM

International Symposium on Microarchitecture, 2007.

[4] T. Chen, J. Lin, X. Dai, W.-C. Hsu, and P.-C. Yew. Data dependence profiling for speculative

optimizations. In Compiler Construction. 2004.

[5] D. A. Connors. Memory profiling for directing data speculative optimizations and scheduling.

Master’s thesis, Department of Electrical and Computer Engineering, University of Illinois,

Urbana, IL, 1997.

[6] N. Froyd, J. Mellor-Crummey, and R. Fowler. Low-overhead call path profiling of unmodified,

optimized code. In Proceedings of the 19th Annual International Conference on

Supercomputing, 2005.

[7] N. P. Johnson, H. Kim, P. Prabhu, A. Zaks, and D. I. August. Speculative separation for

privatization and reductions. In Proceedings of the 33rd ACM SIGPLAN Conference on

Programming Language Design and Implementation, 2012.

- 62 -

[8] A. Ketterlin and P. Clauss. Profiling data-dependence to assist parallelization: Framework, scope,

and optimization. In Proceedings of the 2012 45th Annual IEEE/ACM International

Symposium on Microarchitecture, 2012.

[9] H. Kim, N. P. Johnson, J. W. Lee, S. A. Mahlke, and D. I. August. Automatic speculative

DOALL for clusters. In Proceedings of the Tenth International Symposium on Code Generation

and Optimization, 2012.

[10] M. Kim, H. Kim, and C.-K. Luk. SD3: A scalable approach to dynamic data-dependence

profiling. In Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on

Microarchitecture, 2010.

[11] J. R. Larus. Loop-level parallelism in numeric and symbolic programs. IEEE Transactions on

Parallel and Distributed Systems, July 1993.

[12] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program analysis &

transformation. In Proceedings of the International Symposium on Code Generation and

Optimization, 2004.

[13] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and J. Torrellas. POSH: a TLS compiler

that exploits program structure. In Proceedings of the 11th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, 2006.

[14] M. Mehrara, J. Hao, P.-C. Hsu, and S. Mahlke. Parallelizing sequential applications on

commodity hardware using a low-cost software transactional memory. In Proceedings of the

2009 ACM SIGPLAN Conference on Programming Language Design and Implementation,

2009.

[15] C. G. Quĩ nones, C. Madriles, J. Ś anchez, P. Marcuello, A. Gonź alez, and D. M. Tullsen.

Mitosis compiler: An infrastructure for speculative threading based on pre-computation slices. In

- 63 -

Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and

Implementation, 2005.

[16] L. Rauchwerger and D. A. Padua. The LRPD test: Speculative runtime parallelization of loops

with privatization and reduction parallelization. IEEE Transactions on Parallel Distributed

Systems, 1999.

[17] Y. Sato, Y. Inoguchi, and T. Nakamura. On-the-fly detection of precise loop nests across

procedures on a dynamic binary translation system. In Proceedings of the 8th ACM International

Conference on Computing Frontiers, 2011.

[18] Y. Sato, Y. Inoguchi, and T. Nakamura. Whole program data dependence profiling to unveil

parallel regions in the dynamic execution. In IEEE International Symposium on Workload

Characterization, 2012.

[19] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable approach to thread-level

speculation. In Proceedings of the 27th International Symposium on Computer Architecture,

2000.

[20] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The STAMPede approach to thread-level

speculation. ACM Transactions on Computer Systems, 2005.

[21] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A practical approach to exploiting coarse-

grained pipeline parallelism in c programs. In Proceedings of the 40th Annual IEEE/ACM

International Symposium on Microarchitecture, 2007.

[22] R. Vanka and J. Tuck. Efficient and accurate data dependence profiling using software

signatures. In Proceedings of the Tenth International Symposium on Code Generation and

Optimization, 2012.

[23] P. Wu, A. Kejariwal, and C. Caş caval. Languages and compilers for parallel computing.

chapter Compiler-Driven Dependence Profiling to Guide Program Parallelization. 2008.

- 64 -

[24] H. Yu and Z. Li. Fast loop-level data dependence profiling. In Proceedings of the 26th ACM

International Conference on Supercomputing, 2012.

[25] X. Zhang and S. Jagannathan. Alchemist: A transparent dependence distance profiling

infrastructure. In Proceedings of the 2009 International Symposium on Code Generation and

Optimization, 2009.

[26] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke. Uncovering hidden loop level parallelism

in sequential applications. In IEEE 14th International Symposium on High Performance

Computer Architecture, 2008.

[27] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi. Accurate, efficient, and adaptive calling

context profiling. In ACM SIGPLAN 2006 Conference on Programming Language Design

and Implementation, 2006.

[28] C. Zilles and G. Sohi. Master/slave speculative parallelization. In Proceedings of the 35th Annual

ACM/IEEE International Symposium on Microarchitecture, 2002.

- 65 -

Acknowledgements

감사의 글

포항공과대학교에 입학한 것이 엊그제 같은데 어느덧 졸업을 하게

되었습니다. 우선 학부시절부터 저를 지도해 주시고 대학원

과정까지 이끌어주신 저의 지도교수님이시자 멘토이신 김한준

교수님께 감사 드립니다. 교수님 덕분에 학문뿐만 아니라 제가

살아가는 방식까지 다시 돌아보고 성장할 수 있게 되었습니다.

또한, 바쁘신 와중에도 석사 학위 논문 심사를 흔쾌히 수락해

주시고 아낌없는 조언을 해주신 김장우 교수님과 배경민 교수님께

감사 드립니다.

컴파일러 연구실의 출발부터 연구실이 성장해 나가는 과정을 함께

할 수 있었던 것은 정말 좋은 경험이었습니다. 정신적으로,

학문적으로 힘들 때 항상 많은 도움이 되어 주었던 컴파일러

연구실 동료들에게 감사의 말을 전하고 싶습니다. 연구실에서

동고동락하며 서로에게 큰 힘이 되어준 봉준이형, 선영누나, 창수,

주원이에게 모두 감사합니다. 친구 같은 후배인 준하, 승빈이에게

고마움을 전하며 앞으로의 연구가 좋은 성과를 맺기를 기원합니다.

학부 연구 참여 때부터 많은 도움을 주고 함께 힘든 과정을

해쳐나갔던 경민이, 또 먼저 졸업하신 현준이형, 경주누나에게도

감사함을 전하고 싶습니다. 연구 주제가 다르지만 학문적으로 많은

조언을 준 광무형, 다열이형, 동업이형에게 고맙습니다. 그리고

룸메이트이자 인생 선배로서 정신적인 지주가 되어주셨던

동훈이형에게 진심으로 감사하다는 말을 전하고 싶습니다.

- 66 -

마지막으로 저를 언제나 신뢰해주시고, 사랑해주시고, 공부에

집중할 수 있도록 항상 물심양면으로 키워주신 부모님께 감사

드립니다. 졸업 후에도 더욱 성장하고 발전하여 새로운 가치를

창출해 낼 수 있는 멋진 사람이 될 수 있도록 노력하겠습니다.

감사합니다.

