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Abstract

With the right techniques, multicore architectures may be able to
continue the exponential performance trend that elevated the per-
formance of applications of all types for decades. While many
scientific programs can be parallelized without speculative tech-
niques, speculative parallelism appears to be the key to continu-
ing this trend for general-purpose applications. Recently-proposed
code parallelization techniques, such as those by Bridges et al.
and by Thies et al., demonstrate scalable performance on multiple
cores by using speculation to divide code into atomic units (trans-
actions) that span multiple threads in order to expose data paral-
lelism. Unfortunately, most software and hardware Thread-Level
Speculation (TLS) memory systems and transactional memories
are not sufficient because they only support single-threaded atomic
units. Multi-threaded Transactions (MTXs) address this problem,
but they require expensive hardware support as currently proposed
in the literature. This paper proposes a Software MTX (SMTX)
system that captures the applicability and performance of hard-
ware MTX, but on existing multicore machines. The SMTX system
yields a harmonic mean speedup of 13.36x on native hardware with
four 6-core processors (24 cores in total) running speculatively par-
allelized applications.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent program-
ming structures; D.3.4 [Programming Languages]: Processors—
Run-time environments

General Terms Algorithms, Design, Languages, Performance

Keywords automatic parallelization, loop-level parallelism, multi-
threaded transactions, pipelined parallelism, software transactional
memory, thread-level speculation

1. Introduction

Until recently, the computing industry relied on clock frequency
scaling and uniprocessor microarchitectural enhancements to im-
prove the performance of a wide range of applications. Unfortu-
nately, power and thermal issues have rendered this approach in-
feasible.
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Meanwhile, Moore’s law continues to double the number of
transistors per unit area. Processor designers leverage these addi-
tional transistors by placing multiple cores on the same die. To a
first-order approximation, only multi-threaded applications will en-
joy a performance boost.

Consequently, producing parallel programs is the primary con-
cern of the multicore era. Scientific applications generally have reg-
ular control flow and memory access patterns. Often, they can be
parallelized non-speculatively using DOALL (execute loop itera-
tions independently of each other) and DOACROSS (execute loop
iterations in parallel and synchronize the dependences to ensure
that later iterations get the correct values from earlier ones) [3]. In
contrast to scientific applications, general-purpose programs gen-
erally contain irregular dependences that manifest infrequently or
statically-unresolvable dependences that may not manifest at run-
time. Removing these dependences speculatively can dramatically
improve parallelization. Of course, if a speculatively-removed de-
pendence manifests at runtime, the program must undo the effects
of speculative execution, but this is rare if good speculation deci-
sions are made.

To provide improved levels of coarse-grained loop-level paral-
lelism, Bridges et al. [7] and Thies et al. [29] use pipeline trans-
formations such as Decoupled Software Pipelining (DSWP) [21],
enhanced with speculation and replication of stages without any
cross-iteration dependences. Instead of executing each iteration in
a different thread as in DOALL and DOACROSS, DSWP executes
parts of the loop body in parallel, with dependences flowing uni-
directionally in a pipelined fashion. Bridges et al. and Thies et
al. demonstrate scalable performance on many cores by dividing
atomic units (loop iterations) across multiple threads and speculat-
ing across those units to expose data parallelism.

Combining speculation with pipelining in this manner requires
a notion of Multi-threaded Transactions (MTXs), so that specula-
tive work done in different pipeline stages (by different threads)
can be committed together. Most Thread-Level Speculation (TLS)
memory systems and transactional memory systems do not support
this paradigm because they guarantee only single-threaded atomic-
ity [11, 31]. Vachharajani introduced a hardware memory system
that can support MTXs [31]. The proposed implementation requires
changes to the cache coherence protocol in order to buffer specula-
tive state and recover from misspeculation.

The primary contribution of this paper is the introduction of
the notion of a Software Multi-threaded Transaction (SMTX) to
the literature. SMTXs are efficiently executed by a novel software
runtime system that uses memory versioning. The SMTX system
maintains speculative state and non-speculative state separately
using process-separation, with non-speculative state owned by a
commit process. This allows all the processes to share the same
view of the virtual address space while the virtual memory system
transparently manages the privatization of memory with Copy-



A: while(node) {

B:  node = node−>next;

D:  write(res);

   }

C:  res = work(node);

(a) Example code

A B

C

D

Data dependence
Control dependence

(b) PDG for the example

Figure 1: Running example: The code in (a) has the dependence
pattern shown in (b), and is amenable to both DOACROSS and
DSWP parallelizations.

On-Write semantics. To recover from misspeculation, the SMTX
system remaps the virtual address space of the worker threads to
the committed memory state.

Section 2 motivates the need for SMTXs. Section 3 discusses
the design and implementation of the SMTX system. Section 4
demonstrates how this system can be used for speculative paral-
lelization. It also presents a value-based conflict detection algo-
rithm for loop parallelizations. Section 5 presents the results of par-
allelization and the overheads of the system. Section 6 discusses the
advantages of the SMTX system over cutting-edge software tech-
niques that extract parallelism speculatively from general-purpose
applications [10, 18, 30]. Section 7 concludes the paper.

2. Motivation

Scientific and numerical applications typically consist of counted
loops that manipulate regular structures, accesses to which can
be precisely analyzed statically. Techniques such as DOALL and
DOACROSS can be used to good effect in these domains [3].
DOALL partitions the iteration space into groups that are executed
concurrently with no inter-thread communication. DOALL often
results in speedup that is proportional to the number of threads;
however, it is inapplicable when the loop has cross-iteration de-
pendences. Consider the example code in Figure 1(a). As the Pro-
gram Dependence Graph (PDG) in Figure 1(b) shows, there are
cross-iteration dependences that inhibit DOALL. However, both
DOACROSS and DSWP [21] are applicable, and their respective
schedules are shown in Figure 2(a). Each node represents a dy-
namic instance (as indicated by the iteration number following the
dot) of a statement in Figure 1(a). DOACROSS schedules the entire
loop body iteration by iteration on alternate threads. DSWP parti-
tions the loop body across the execution threads, and each thread is
responsible for all iterations of its piece of the loop body. As Fig-
ure 2(a) shows, ignoring the pipeline fill time, both DOACROSS
and DSWP yield a speedup of 2x using 2 threads at steady state.

As a result of the manner in which DOACROSS schedules
the iterations, cross-iterations dependences that form recurrences
(strongly-connected components in the PDG) must be communi-
cated from thread to thread. This puts the inter-thread (and po-
tentially inter-core) communication latency on the critical path. In
contrast, by keeping dependence recurrences thread-local, DSWP
is tolerant to increase in inter-thread communication latency. So,
when the inter-core latency is increased to 2 cycles as in Fig-
ure 2(b), the speedup with DOACROSS reduces to 1.33x whereas
the speedup with DSWP remains 2x at steady state.

While DOACROSS and DSWP speed up many programs, most
general-purpose programs are characterized by complicated con-
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Figure 2: Advantage of pipelining: Pipelined parallelism keeps
critical-path dependences thread-local and communication unidi-
rectional; thus it is tolerant to increase in communication latency.

trol flow and irregular memory access patterns. For example, as-
sume that statement C in Figure 1(a) may modify the linked-list.
This introduces cross-iteration data dependences through memory
from statement C to A and B. Respecting all the potential depen-
dences severely limits the achievable speedup: DOACROSS suf-
fers because the iterations are essentially serialized, while DSWP
suffers because three of the four statements now participate in a
dependence recurrence thereby skewing the pipeline balance.

The compiler is conservative either because it respects an infre-
quent dependence or because it cannot determine that a dependence
does not actually exist. Either way, speculation allows the compiler
to overcome these limitations. Most speculative parallelization pro-
posals are iteration-centric in that they try to break dependences
that go around the loop’s back-edge. Such dependence edges result
in cycles in the PDG as shown in Figure 1(b).

One approach called Spec-DOALL breaks all the cycles us-
ing speculation. Speculating all loop-carried dependences typically
results in the misspeculation of many iterations since it is not
easy to correctly predict all the edges. Another approach called
Spec-DOACROSS breaks only some of the cycles using specula-
tion, while other cycles are respected and the corresponding de-
pendences are synchronized as in DOACROSS. However, as in
DOACROSS, this strategy puts the inter-core communication la-
tency on the critical path thus negating most parallelism benefits
on multicore architectures which have non-unit communication la-
tency. Together, these schemes are called Thread-Level Specula-
tion (TLS) [5, 24, 28, 34]. A third approach called Spec-DSWP
also breaks only some cycles. In contrast to Spec-DOALL, this ap-
proach selectively breaks those cycles that can be broken with high
confidence, thereby resulting in higher success rates. In contrast to
Spec-DOACROSS, this approach selectively allows those cycles
that contain hard-to-predict edges to remain thread-local, and is
thus not penalized by inter-core communication latency [7, 29, 32].

The memory dependences from C to A and B, and the con-
trol dependences from A to itself, B, C, and D are easy to pre-
dict and can be speculated (Figure 3(a)). To apply Spec-DOALL,
all cycles must be broken; so, in addition to dependences that are
easily predicted, those that are hard to predict such as the self-
dependences of statements B and D must be speculated. Predicting
the values of node on each iteration is very difficult in general. Ap-
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Figure 3: The need for Multi-threaded Transactions (MTXs): With several dependences speculatively removed (a), the loop in Figure 1(a)
can be parallelized with Spec-DOACROSS (b) and with Spec-DSWP (c). While an atomic unit (shown as a lightly-shaded region) is confined
to a single thread in (b), it spans multiple threads in (c). The darkly-shaded regions correspond to sub-transactions in an MTX. Spec-DSWP
can help replicate stages without any cross-iteration dependences to use additional cores (d).

plying Spec-DOALL can lead to high misspeculation rate and poor
performance. Applying Spec-DOACROSS would synchronize the
hard-to-predict dependences as in Figure 3(b). However, the result-
ing cyclic communication pattern adversely affects performance. In
contrast, Spec-DSWP keeps the dependence cycles thread-local as
in Figure 3(c). Put another way, Spec-DSWP has the freedom to
either break a dependence cycle or keep it thread-local. It breaks
cycles to create more pipeline stages (for example, the B-C cycle),
and also to create stages with no cross-iteration dependences (with
respect to the parallelized loop) so that such stages (that dominate
execution time) may be replicated as in Figure 3(d) (this is like
applying Spec-DOALL to a part of the loop body).

In TLS schemes, a loop iteration is the unit of atomicity; in other
words, each iteration is executed in a transaction. A traditional
three-thread Spec-DOACROSS parallelization would schedule the
loop iterations as shown in Figure 3(b) (Statement A is transformed
to while(true) and is not shown). Observe that each transac-
tion (shown as a lightly-shaded box) is executed in a single thread.
Consequently, conventional transactional semantics that guarantee
single-threaded atomicity suffice. Similar to TLS techniques, Spec-
DSWP also uses loop iterations as the unit of atomic work. In order
to handle misspeculation, the system conceptually checkpoints the
state of the single-threaded loop on each iteration. However, be-
cause the unit of atomicity is still the iteration, the atomic unit gets
split up across multiple threads as shown by the lightly-shaded re-
gion in Figure 3(c). Thus, conventional TLS epochs or transactions
are insufficient to execute these multi-threaded atomic units.

Multi-threaded Transactions (MTXs) can be used to support
these atomic units. Conceptually, MTXs provide the illusion of
a private memory for the threads participating inside these trans-
actions. An MTX may contain many sub-transactions (subTXs).
(Note that an MTX with only one subTX is equivalent to a single-
threaded transaction or TLS epoch.) Only one thread executes each
subTX. Figure 3(c) shows how each stage of a loop iteration can
execute in a subTX within an MTX (shown as darkly-shaded cir-
cles in the figure). The stores by earlier subTXs are visible in later
subTXs within the same MTX. This allows for synchronization of
these subTXs, thus preventing intra-MTX misspeculation. Vach-
harajani proposed specialized hardware to support MTXs. It in-
cludes a new invalidation-based cache coherence protocol and a set
of point-to-point queues [31]. This motivates an investigation of
whether special hardware is necessary to efficiently support MTX-
enabled speculative parallelization.

3. Design & Implementation

The paper describes a software system that generalizes existing
software TLS memory systems to support speculative pipelining
schemes, and is efficiently tuned for loop parallelization. Concep-
tually, an MTX provides a private memory (or memory version) for
the threads participating in the MTX. This memory is initialized
with the contents of committed memory at the time of creation of
the MTX. Loads and stores interact with this memory version (Sec-
tion 3.1). At the end of the MTX, if no conflicts are detected (Sec-
tion 3.2), this version of memory becomes the committed version;
otherwise, the MTX is rolled back (Section 3.3).

3.1 Atomicity and Isolation / Memory Versioning

To support simultaneous execution of multiple MTXs, the SMTX
system must be able to create multiple versions of memory. There
are two approaches. First, in-place or eager versioning directly up-
dates the shared memory after locking the memory location, and
stores the old value in an undo-buffer. Second, buffered or lazy ver-
sioning buffers speculative writes in a write-buffer, and updates the
shared memory on successful commit [16]. In both cases, writing
to shared memory involves acquiring locks on the locations being
written to so that program state remains consistent. This can add
considerable overhead. In contrast to distributed update of spec-
ulative state, if the non-speculative state is owned by a commit
unit, then there is no need to lock the memory locations thereby
eliminating the overhead. Section 5 shows that, for the number of
threads studied, this centralization does not cause scalability prob-
lems. Therefore, the proposed SMTX system uses lazy versioning
with a centralized commit unit. Figure 4 presents the commit unit’s
algorithm. In this model, each transaction writes to a write-buffer
that is part of the transaction’s private memory. Once the transac-
tion is known to be free of conflicts (Figure 4: line 4), the commit-
unit replays the writes in the transaction’s write-buffer in its own
committed memory (Figure 4: line 7).

While the locking overhead of transactional writes is eliminated
in this model, a new overhead is imposed on transactional reads.
All loads must read from the transaction’s private memory. Conse-
quently, the write-buffer must now be checked each time a trans-
actional read happens in order to determine whether the transac-
tion has written to that location in the past. This overhead can be
significant particularly for long-running transactions such as outer-
loop iterations [9]. This write-buffer scan cannot be eliminated in
thread-based approaches that share the logical and physical address



1 commitUnit () {
2 version = 0;
3 while (TRUE) {
4 status = CONFLICT DETECTOR(version);
5 switch (status) {
6 case NO CONFLICT:
7 COMMIT ALL WRITES(version); break;
8 case CONFLICT:
9 DISCARD ALL WRITES(version);

10 REEXECUTE MTX();
11 }
12 version++;
13 }
14 }

Figure 4: Commit Unit Algorithm

spaces. However, if the transactions are executed inside UNIX pro-
cesses, they can rely on the underlying virtual memory system to
transparently create a private physical copy (at the page granularity)
of the memory location of the transactional write. A load from the
same location, that happens later on in the transaction, is ordinary
in the sense that there is no need to scan a write-buffer.

While the above suffices for single-threaded transactions (TLS
epochs), it is insufficient to support multi-threaded transactions
(MTXs). This is because stores executed speculatively by an ear-
lier subTX must be visible to later subTXs within the same MTX
(this allows the subTXs to execute cooperatively). In other words,
all subTXs within an MTX must access the same version of mem-
ory. Vachharajani calls this uncommitted value forwarding [31]. To
implement this, the hardware MTX system augments each cache
line with a version ID (VID) and buffers speculative state in the
cache. A read request carries a VID, and the hardware is responsi-
ble for returning the value from the appropriate cache line. In the
SMTX system, prior to executing “real work”, each subTX replays
the stores in the write-buffers of earlier subTXs, thus updating its
view of memory and effectively entering the same memory version
as its predecessor subTXs.

In addition to uncommitted value forwarding, stores emanat-
ing from all the subTXs inside an MTX must appear to execute
atomically. This is called group transaction commit [31]. As de-
scribed earlier, stores inside the subTXs are forwarded over the
write-buffers to the commit unit. If the commit unit determines
that the MTX does not conflict with other MTXs, all the stores
in the write-buffers are executed in the non-speculative memory
state in order of subTX (subTXs are ordered a priori); otherwise,
all of them are discarded (Figure 4: line 9). This guarantees multi-
threaded atomicity.

3.2 Conflict Detection

Conflicts between MTXs arise when they access the same location
and one of them writes to it. Conflict detection may be performed
on each transactional load and store (eager conflict detection) or
at commit time (lazy conflict detection). As mentioned earlier, the
success of speculative loop parallelization depends on minimizing
the penalty on load operations. So, conflict detection is decoupled
from a transaction’s execution and is done lazily at commit time by
a try-commit unit.

Any software conflict detection mechanism can be used with
the SMTX runtime system. Conflict detection based on mirroring
the cache-coherence protocol [25], using load vectors and version
numbers to detect flow dependences while committing writes [19],
comparing read and write signatures to determine whether they
overlap [18], etc. may all be used in conjunction with the SMTX
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Figure 5: (a) SMTX system design: The page tables map the same
virtual address range to either private or shared physical pages. (b)
After recovery, the page tables of all the worker threads point to the
non-speculative pages which are marked as COW.

system. Indeed, the right granularity/precision of tracking varies,
often within the same application [2, 19]. Thus, it appears to be a
good idea to leave the choice of dependence checking mechanisms
to the client (programmer and smart compiler) of the SMTX sys-
tem. Section 4 describes conflict detection mechanisms optimized
for loop parallelization of the target applications using SMTX.

3.3 Conflict Resolution / Rollback

If a conflict is detected, the commit unit flushes the entries in the
write-buffers of the MTXs that are to be rolled back, and then
restarts the MTXs on the worker threads with a copy of its own
committed version of memory. Since the focus is on loop paral-
lelization, the total ordering determined by the chronological order
of the loop iterations in the program’s non-speculative sequential
execution dictates which MTXs will be rolled back.

3.4 Implementation

Figure 5(a) illustrates the SMTX design with two speculative
worker threads and the commit unit. Initially, the workers and the
commit process share all the physical pages in memory by virtue of
identical but separate page tables. However, the workers’ pages are
marked as Copy-On-Write (COW). The state of the system shown
in the figure is such that each worker has written to parts of mem-
ory resulting in private physical copies of the same virtual address
range. The COW semantics ensure that only the modified pages are
copied. Other pages will remain shared (as shown). As mentioned
earlier, speculative writes are buffered in write-buffers. These and
other messages are communicated through highly optimized single-
producer/single-consumer lock-free queues in shared memory. The
queue structure preserves the ordering of the events occurring in
the workers, and allows workers executing later subTXs to up-
date their memory while the earlier subTX is executing. The queue
implementation is similar to the FastForward queue developed by
Giacomoni et al. [12]. Communication channels exist between each
worker and the commit unit. For uncommitted value forwarding,
communication channels are created between only those workers
that may execute subTXs of an MTX. The parallelization strategy
described later in Section 4 ensures that the number of communi-
cation channels is typically linear, not quadratic in the number of
worker threads.



When misspeculation (inter-transaction conflict) is detected, the
commit process is notified of this condition. It then takes the fol-
lowing actions:
1. The relevant pages are marked as COW.
2. For each worker, the page table entries of the commit process

are copied into the worker’s page tables.
3. The TLB of the core on which the worker is executing is

flushed so that stale virtual-to-physical address mappings are
not reused.

Loads in subsequently executed MTXs will transparently read com-
mitted, non-speculative values. Figure 5(b) illustrates this mem-
ory rollback operation. Observe that rollback does not involve any
costly application-data copying operations. The speculative data is
simply discarded. Comparing with Figure 5(a), the page tables have
been remapped and the private pages have been discarded.

4. Loop Parallelization With SMTX

The SMTX system developed in the preceding section is imple-
mented as a library. Table 1 presents the interface in two sec-
tions. The first section consists of one-time setup and finalization
primitives. The second section consists of primitives that are in-
voked during the execution of SMTXs. The library may be used
in conjunction with many parallelization schemes; its use with one
scheme is described below.

4.1 Parallelization Scheme

Recent work has shown that there is significant loop-level paral-
lelism in the outermost loops of applications [7, 29, 30, 33]. In most
cases, the loop body is decomposed into three phases; dynamic in-
stances of each phase are called tasks. Each phase exhibits a dif-
ferent dependence pattern (ignoring the speculated dependences).
The first phase depends only on prior tasks of the same phase. The
second phase depends only on the corresponding task of the first
phase. The third phase depends on the corresponding task of the
second phase and prior tasks of itself. Such a partitioning of the
loop body is shown in Figure 3(a); statements B, C, and D consti-
tute the three phases.

Bridges et al. and Thies et al. present a parallelization scheme
which incorporates pipelining into the basic loop partitioning dis-
cussed above [7, 29]. By inserting decoupling buffers in between
the stages of the pipeline, the different stages could be execut-
ing simultaneously on different iterations. This technique is called
Decoupled Software Pipelining (DSWP)[21]. This base technique
is extended with speculation to break dependence-recurrences to
create a long pipeline in Spec-DSWP [32]. Speculation is fur-
ther used to break inter-iteration dependences to expose data-level
parallelism, allowing the replication of pipeline stages with no
loop-carried dependences. This is called Speculative Parallel-Stage
DSWP (Spec-PS-DSWP)[8]. Figure 6 shows this execution model.
As described in Section 2, this pipelined parallelization has benefits
over TLS techniques. Thus, Spec-PS-DSWP is used as the general
parallelization strategy. Note that if the pipeline consists of just one
stage and it is a speculatively parallel (DOALL) stage, the execu-
tion model degenerates to Speculative DOALL [18, 33].

Loop parallelization is done as follows: The speculative part of
the loop is wrapped in an MTX, with each iteration split into mul-
tiple subTXs (shown in Figure 6 as similarly shaded ovals). These
subTXs are executed by the stages of the Spec-PS-DSWP pipeline.
To orchestrate speculative execution, Spec-PS-DSWP relies on a
commit stage (Figure 6, Commit Stage). The functionality needed
in the commit stage is already encapsulated by the commit unit’s
functionality in the SMTX system described in the previous sec-
tion.
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Figure 6: Pipelined Execution with Stage Replication: A dashed
horizontal line indicates the time at which all subTXs in an MTX
have finished and the MTX is ready to commit.

1 status CONFLICT DETECTOR(version) {
2 for (each worker that entered this version) {
3 do {
4 status = ver checkForConflict(worker);
5 } while (status == CONTINUE);
6 if (status == MISSPEC)
7 return CONFLICT;
8 }
9 return NO CONFLICT;

10 }
11

12 status ver checkForConflict (worker) {
13 token = sq consume(q[worker]);
14 value = sq consume(q[worker]);
15 if (token) {
16 addr = mask1(token);
17 isRead = mask2(token);
18 if (isRead) {
19 if (∗addr != value) return MISSPEC;
20 } else {
21 ∗addr = value;
22 }
23 return CONTINUE;
24 }
25 return BREAK;
26 }

Figure 7: A value-based conflict detector is used to detect
memory conflicts between transactions.

4.2 Conflict Detection

In the context of loops, there are flow, anti, or output dependences
between the loop iterations. The use of memory versioning ensures
that MTXs write to different physical versions of the same logical
memory address. This removes all false (anti and output) depen-
dences without code transformations.

Loads and stores that may alias forward the 〈addr, value〉 tu-
ple by calling ver read and ver writeTo (Table 1). The conflict
detector does a sequential replay of this memory trace in its pri-
vate memory to detect whether flow-dependence violations have
occurred (Figure 7: lines 2-8). For example, let a store operation in
MTX1 store value v1 in location l, and a load operation in MTX2



Operation Description

One-time Operations

system = ver newSMTXsystem(n,
configuration)

Initialize system of n threads with the given pipeline configuration; create queues etc.

ver deleteSMTXsystem(system) Finalize system; delete various data structures
ver spawn(function, tid, argument) Spawn a new worker with thread id tid that will execute function with the provided

argument

ver commitUnit(system, recovery fun,
commit fun, arg)

Encapsulates the functionality of the commit unit ; executes commit fun when an MTX suc-
cessfully commits, and executes recovery fun to non-speculatively execute the misspeculat-
ing iteration

ver tryCommitUnit(tid, arg) Encapsulates the conflict detection mechanism that is executed by a try-commit unit

Running Operations for Workers

sq produce(queue, value) Enqueue value in specified queue; block if queue is full.
value = sq consume(queue) Dequeue and return value; block if queue is empty.
state = ver begin(tid) Enter a new version by updating memory with stores in this version by workers that modified

this version earlier; notify commit unit that a new version has been entered; returns the state
of the system to check for misspeculation or termination

state = ver end(tid) End the current version and notify later stages including the commit unit of the same; returns
the state of the system to check for misspeculation or termination

ver writeTo(tid, dest, addr, value) Forward an 〈addr, value〉 tuple to the specified destination
ver writeAll(tid, addr, value) Forward an 〈addr, value〉 tuple to all later stages in the pipeline including the try-commit unit

and the commit unit
ver read(tid, addr, value) Forward an 〈addr, value〉 tuple to the try-commit unit
ver misspec(tid) Notify the commit unit of misspeculation
ver terminate(tid) Notify the commit unit of termination of the parallel region
ver doRecovery(tid) Handle recovery from misspeculation

Table 1: SMTX Runtime Library Interface For Loop Parallelization By Programmer and Optimizing Compiler

load value v2 from location l concurrently. Since the conflict de-
tector executes loads and stores sequentially, it first writes value v1
to location l in its own physical copy of the virtual address space
(Figure 7: line 21). When it encounters the later (in terms of original
loop sequentiality) load operation, it compares the value that was
loaded speculatively (v2) with the value in its memory (v1) in the
same location l (Figure 7: line 19). If they are different, then mis-
speculation has occurred since the dependence was not respected;
otherwise, speculation has succeeded. Value-based checking sub-
sumes multiple load-store alias checks. Speculation will succeed
so long as the load operation reads the correct value; the value may
have been written by any store operation.

The commit unit cannot be used to perform this checking be-
cause it involves updating memory with the values of speculative
writes. If a conflict is detected midway into a transaction’s checks,
then the earlier updates to memory cannot be undone, and atomicity
cannot be guaranteed. Thus, a separate try-commit unit executing
inside a UNIX process is used to do the conflict checking. Refer-
ring back to Figure 4, the call of CONFLICT DETECTOR on line
4 blocks until the try-commit unit returns the status of the MTX.

This decoupling of conflict detection, transaction execution,
and transaction commit allows the try-commit unit to do conflict
detection in parallel with the speculative workers which could be
executing other MTXs, and also in parallel with the commit unit
which could be committing the writes by earlier MTXs that have
been deemed conflict-free by the try-commit unit.

In many cases, a simpler variant of this general checking scheme
may be employed. A load L is predicted to read the same value
at the beginning of each iteration. At the end of each iteration,
when the correct value has been computed, the memory location
is checked to ensure that the speculation is correct. This scheme
is very useful in cases of loads from data structures that may be
modified heavily during an iteration but are reset to the value that
they had at the beginning of the iteration. This kind of speculation
has been used in other systems [8, 10, 20].

4.3 Putting It All Together

Figure 8 shows how the single-threaded loop in Figure 3(a) is trans-
formed into a multi-threaded one using the SMTX library. The loop
body is divided into three stages. The statements corresponding to
the original loop are shaded in Figure 8. Two threads are needed to
execute stage 1 and stage 3 (Figure 8(d): lines 3, 4), and two
more are needed for the commit unit and the try-commit unit (Fig-
ure 8(d): lines 8, 9). The remaining threads are assigned to the par-
allel stage (stage 2) that does the bulk of the work (Figure 8(d):
lines 5-7). This partitioning is informed by the dependence pat-
tern exhibited by the loop statements. ver begin and ver end are
used to enter and leave memory versions. As mentioned in Table 1,
ver begin makes the executor enter a new version of memory:
this is done by updating memory with values forwarded by work-
ers that have entered and left that version before. ver end noti-
fies other workers that the executor has finished all its updates to
the current version of memory, and that others may now enter
that version. All dependences that are removed speculatively (see
Figure 3 (a)) must be checked for manifestation. The statement on
line 8 in Figure 8 (a) checks the control dependences. Reads and
writes are instrumented and forwarded to the try-commit unit for
memory conflict detection. The instrumentation must be done inter-
procedurally. For example, since work may update node, the write
operation(s) inside work must be instrumented. Figure 8(e) shows
the additions to the algorithm presented in Figure 4. After commit-
ting a version, commit fun is executed (Figure 8(e): line 9). Typ-
ically, commit fun performs some I/O operations that presently
cannot be performed inside speculative regions. Upon misspecula-
tion, recovery fun is executed (Figure 8(e): line 12) by the com-
mit stage. This is a single-threaded execution of the loop body that
respects all dependences, using the non-speculative program state.
Following this, speculative execution resumes with the new, non-
speculative program state. The ver terminate call on line 9 in
Figure 8 (a) informs all threads of loop termination. At this point,
there are two cases possible. First, all MTXs commit successfully,
allowing the worker executing stage1 to exit. Second, an MTX in



1 void stage1 (tid, arg){
2 version = 0;

3 while(TRUE){
4 if (ver begin(tid))
5 {ver doRecovery(tid);continue;}
6 ver read(tid, &node−>next, node−>next);

7 node = node−>next;
8 if (!node) {
9 ver terminate(tid);

10 ver doRecovery(tid); continue;
11 }
12 dest = 1 + (version % np);
13 ver writeTo(tid, dest, &node, node);
14 ver writeTo(tid, try commit unit, &node, node);
15 ver writeTo(tid, commit unit, &node, node);
16 if (ver end(tid))
17 {ver doRecovery(tid);continue;}
18 version++;
19 }
20 }

(a) Stage 1 (Sequential Stage / Read)

1 void stage2 (tid, arg){
2 version = 0;
3 while(TRUE){
4 if (ver begin(tid))
5 {ver doRecovery(tid);continue;}
6 if ((version % np) == (tid − 1)) {
7 ver read(tid, &node, node);

8 res = work(node);
9 ver writeAll(tid, &res, res);

10 }
11 if (ver end(tid))
12 {ver doRecovery(tid);continue;}
13 version++;
14 }
15 }

(b) Stage 2 (Parallel Stage / Work)

1 void stage3 (tid,arg){
2 version = 0;
3 while(TRUE){
4 if (ver begin(tid))
5 {ver doRecovery(tid);continue;}
6 ver read(tid, &res, res);

7 write(res);
8 if (ver end(tid))
9 {ver doRecovery(tid);continue;}

10 version++;

11 }
12 }

(c) Stage 3 (Sequential Stage / Write)

1 system = ver newSMTXsystem(n,config);
2 np = n−4; //number of parallel stage threads
3 ver spawn(stage1, tids[0], arg);
4 ver spawn(stage3, tids[n−3], arg);
5 for (i = 1; i <= np; i++){
6 ver spawn(stage2, tids[i], arg);
7 }
8 ver spawn(ver tryCommitUnit, tids[n−2], arg);
9 ver commitUnit(system, recovery fun, commit fun, arg); //

implementation shown on the right

10 ver deleteSMTXsystem(system);

(d) Main Thread / Commit Stage

1 void ver commitUnit (system, recovery fun, commit fun, arg)
2 {
3 version = 0;
4 while (TRUE) {
5 status = CONFLICT DETECTOR(version);
6 switch (status) {
7 case NO CONFLICT:
8 COMMIT ALL WRITES(version);
9 commit fun(arg); break;

10 case CONFLICT:
11 DISCARD ALL WRITES(version);
12 recovery fun(arg);
13 RECOVER WORKERS(system);
14 }
15 version++;
16 }
17 }

(e) Modified Commit Unit

Figure 8: The sequential loop in Figure 3(a) is transformed into a three-stage Spec-PS-DSWP pipeline with the second stage being a parallel
stage. Stage 1 (a) is executed on core 1, stage 2 (b) on cores 2 and 3, and stage 3 (c) on core 4 as shown in Figure 6. The main thread (d)
executes code outside the parallel region. Inside the parallel region, it doubles up as the commit stage on core 5 as shown in Figure 6.

which this worker participated aborts at some later time due to a
memory conflict; in this case, the continue statement on line 10
in the same figure allows the worker executing stage1 to resume
execution of MTXs in the loop. Handling loop termination in the
commit unit is straightforward and is not shown in Figure 8 (e).

5. Evaluation

5.1 Experimental Setup

The SMTX system is evaluated on two machines, called M1 and
M2, with both running Linux 2.6.24. Table 2 gives the details of
their hardware configurations.

CPU-intensive benchmarks requiring speculation were selected
from the SPEC CINT and CFP benchmark suites [27], the PAR-
SEC benchmark suite [6], and GIMP [13]. Code transformations
(as shown in Figure 8) were done manually in a systematic man-
ner as a modern compiler would do. We used loop-level profiling
and analysis information from the LLVM infrastructure [17] and
the VELOCITY compiler [8] to determine candidates for specu-

lation. Since the transformations were done manually, tractability
in terms of source code size and loop-spread across functions also
influenced the loop and benchmark selection process.

Table 3 gives detailed information about each application’s
characteristics including parallel coverage, parallelization para-
digm and speculations. A detailed description of each application
can be found in [6, 13, 27]. As the last column of the table indicates,

Intel Xeon Intel Xeon

E5310, M1 X7460, M2

Processor Intel Core, 64-bit Intel Core, 64-bit
# Sockets 2 4
Cores per Socket 4 6
Threads per Core 1 1
Total # Threads 8 24

Clock Speed 1.6 GHz 2.66 GHz
Total RAM 8 GB 24 GB

Table 2: Hardware Platforms



Source
Source % of Parallelization Speculation Code

Benchmark Suite Function Runtime Paradigm Types Modified

052.alvinn SPEC CFP main 85.5 Spec-DSWP MV No

130.li SPEC CINT main 100.0 Spec-DOALL CFS,MVS,MV No

164.gzip SPEC CINT deflate 98.4 Spec-PS-DSWP MV Yes

181.mcf SPEC CINT primal net simplex 82.2 Spec-DSWP CFS,SSS,MV No

197.parser SPEC CINT batch process 100.0 Spec-PS-DSWP CFS,MVS,MV No

256.bzip2 SPEC CINT compressStream 98.5 Spec-PS-DSWP CFS,MV No

456.hmmer SPEC CINT main loop serial 100.0 Spec-PS-DSWP MV No

crc32 Ref. Impl. main 100.0 Spec-DOALL CFS,MV No

blackscholes PARSEC main 100.0 Spec-DOALL CFS No

gimp-oilify GIMP oilify 98.9 Spec-DOALL MVS/AS No

gimp-nova GIMP nova 91.8 Spec-DOALL MVS/AS No

AS = Alias Speculation, CFS = Control Flow Speculation, MVS = Memory Value Speculation, MV = Memory Versioning, SSS = Silent Store Speculation

Table 3: Benchmark Details

the source code of 164.gzip was modified to make it amenable to
parallelization; the modification is described in Section 5.3.2.

As a general note, by supporting Memory Versioning (MV), the
SMTX system automatically breaks loop-carried false memory de-
pendences. Because the memory pages are dynamically privatized,
writes go to different physical locations. As Table 3 shows, MV is
enough to parallelize some applications.

Implementation dependences in the memory allocator and ran-
dom number generator were ignored because of the commutativity
property of these functions [7, 15].

5.2 SMTX System Overhead

The overhead of the SMTX system is composed of one-time
and running costs. The one-time costs are initializing the system,
spawning the speculative worker threads (once per application run),
and dedicating threads to the commit unit and the try-commit unit.
The running costs are:
1. communicating speculative writes
2. refreshing local state with writes by other workers
3. in case of memory dependence speculation

• executing transactional reads
• executing transactional writes

4. recovering from misspeculation
5. copying a memory page when it is written to (COW)

Items 1, 2, and 3 depend on the performance of the software queues.
Particularly in the case of transactional reads, the number of cycles
to produce an 〈addr, value〉 tuple falls on the critical path, and
hence producing to queues must be a fast operation. Table 4 shows
the costs of performing the above operations. The cost of copying
a page when it is written to is amortized over all accesses to the
copied page. The absolute costs shown in the table were measured
using the average across ten runs of micro-benchmarks.

Overhead Metric Cost on M1 Cost on M2

COW cycles/page 9613 12018
ver read cycles/read 18 67
ver write cycles/write 22 64
Recovery #workers/sec 4820 4336

Table 4: SMTX System Overhead

5.3 Results and Analysis

gcc (v4.2.4, -O3) was used to generate the native x86 binaries of
both the sequential and parallel versions of the applications below.
For each application, the baseline is the execution time of the
sequential, unmodified code. All execution times were averaged
across ten runs.

5.3.1 Applications without a parallel stage

052.alvinn trains a neural network using back propagation.
Memory Versioning is used to break false memory dependences.
The parallelized loop consists of inner loops. These inner loops are
put in their own stages, creating a balanced two-stage pipeline: this
yielded a speedup of 88%.

181.mcf is used to solve the single-depot vehicle scheduling
problem. A pipeline consisting of two stages is extracted yielding
a speedup of 40.73%. A store in the later stage is speculated to
write the same value as the one already existing at that location
(silent store speculation). Memory Versioning allows the first stage
to execute later iterations while the second stage is still working on
earlier iterations.

5.3.2 Applications with a parallel stage

Figure 9 shows full application speedup on the 24-core Intel Xeon
X7460 machine. The x-axis shows the number of parallel stage
threads: the size of the parallel stage indicates the scalability of
the parallelization.

130.li is an implementation of lisp with object-oriented pro-
gramming. The outermost loop processes the set of lisp scripts pro-
vided on the command line. Typically, each script can be processed
independently of the other; this requires value speculation of vari-
ous global environment-related variables, and a branch speculation
that a script will not instruct the interpreter to exit. If the speculation
fails in the latter case, the effects of all later scripts are squashed.
The speedup is limited only by the input size.

164.gzip performs data compression using Lempel-Ziv cod-
ing. Only the compression part is parallelized. In 164.gzip, a three-
stage pipeline is formed, with the first stage reading from the input
file and storing the data in a block, the second stage compressing
the block, and the third stage writing to the output buffer. Putting
the loop-carried dependences in their own stages allows the second
stage to potentially become a parallel (DOALL) stage. However,
the choice of when to terminate a block and start a new one is re-
lated to the compression achieved on the current block. This de-
pendence prevents parallelism across blocks; to break it, the code
is modified to start a new block at fixed intervals. This results in a
tradeoff between performance and compression level. In this appli-
cation, the input file is read into a buffer, and the entire compression
and decompression happens in memory. At higher thread counts,
many of the threads do not fully utilize the CPU cycles; it appears
that the memory bandwidth becomes the bottleneck causing them
to stall on memory operations.

197.parser is a syntactic parser of the English language based
on link grammar. The parsing of a sentence is typically independent
of the others. In the parallel version, a sequential stage reads the
sentences and presents them to a parallel stage for parsing. There
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Figure 9: Scaling of application performance on machine M2: Parallel stage threads are executed on up to 23 cores, after leaving cores free
for execution of sequential stages.

are several global data structures that are modified inside an itera-
tion, but they are reset at the end of the iteration to the same values
that they had at the beginning of that iteration. The value specula-
tion described in Section 4.2 is used to break the dependences aris-
ing out of the stores to these data structures. Also, some branches
that are taken under error conditions are speculated to not be taken.
The loop speedup is affected by the variability in sentence length
and is mainly limited by the number of sentences to parse.

256.bzip2 performs data compression using the Burrows-
Wheeler transform. Again, only the compression part is paral-
lelized. The parallelization is similar to that of 164.gzip. In both
cases, a variable-sized block array (produced by applying Run-
Length Encoding to the input data) is the data structure used to
store the blocks on which compression happens. Since the size of
this array is unknown statically, very complicated whole-program
analyses would be required for static privatization of the data struc-
ture. Memory Versioning allows the dynamic privatization of these
data structures thus enabling parallelization.

456.hmmer is a computational biology application that searches
for patterns in DNA sequences using profile Hidden Markov Mod-
els (HMMs). The loop in main loop serial is parallelized. Scores
are calculated in parallel on sequences which are randomly se-
lected. The Commutative annotation is used to break the depen-
dence inside the random number generator. Following this parallel
stage is a sequential stage in which a histogram is computed and
the maximum score selected by using max-reduction. The speedup
is limited by this sequential phase.

crc32 computes the 32-bit CRC of files specified on the com-
mand line. Very little speculation is needed: error conditions that
occur during the computation are speculated to not occur. The
speedup is limited by the number of files and the variability in the
file sizes.

blackscholes is an Intel RMS benchmark. It calculates the
prices for a portfolio of European options analytically with the
Black-Scholes partial differential equation. As in crc32, the only

speculation needed is that an error will not occur in the pricing. The
speedup is limited only by the number of options to price.

5.3.3 An in-depth look at GIMP

gimp-oilify and gimp-nova are artistic transformation filters
that are part of GIMP- the GNU Image Manipulation Program. The
oilify filter makes an image look like an oil painting. The nova filter
inserts a big star and associated light effects in the image. Rows are
processed in parallel.

Figure 10 shows the speedup of gimp using Spec-DOALL
on machine M1. The try-commit unit based checking algorithm
scales up to 5 worker threads. Beyond that, the try-commit unit
becomes the bottleneck. There is not enough computation hap-
pening in the worker threads in parallel with the replay of loads
and stores in the try-commit unit. Micro-architectural profiling re-
veals that the try-commit unit spends a significant fraction of its
execution time stalling due to the number of load-store instruc-
tions in the processor pipeline reaching the limit the processor
can handle. This overhead is so much on machine M2 that there
is no speedup to be gained. Parallelizing the execution of the
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Benchmark
Speedup with SMTX Recovery Pages

0% 1% Components Ver-
Misspec Misspec ERM FLQ RW sioned

130.li 6.36x 4.67x 50.2% 14.1% 29.5% 57.61%

197.parser 4.68x 2.78x 15.4% 59.4% 25.2% 54.67%

256.bzip2 5.25x 3.81x 64.6% 17.1% 15.6% 8.41%

crc32 5.68x 4.87x 10.1% 0.0% 86.4% 32.47%

blackscholes 6.91x 6.34x 8.4% 0.0% 91.5% 54.68%

164.gzip 5.77x NotID NotID NotID NotID 10.90%

456.hmmer 6.94x NotID NotID NotID NotID 38.79%

gimp-oilify 5.24x NotID NotID NotID NotID 63.55%

gimp-nova 5.49x NotID NotID NotID NotID 5.59%

Table 5: Overheads of Recovery and Versioning. NotID (Not Input
Dependent) means speculation never fails.

try-commit unit itself would alleviate the bottleneck leading to
better scaling. This is left to future work. Other checking algo-
rithms, such as Bloom filter based signature matching [18], may
be more suitable for such loops. Manually applying an address-
range comparison based checking algorithm results in greatly im-
proved performance scaling comparable to the multi-threaded par-
allelization with no checking. This is shown in Figures 9 and 10
as gimp-oilify-range-check and gimp-nova-range-check.
Developing an analysis to insert such checking is left to future
work. The scalability of gimp-oilify is limited by the low loop
iteration count of 64 (because pixel regions are 64x64), and load
balancing among the workers. Memory performance is the limiting
factor for gimp-nova’s speedup. Multi-threading using pthreads
with no checking yielded similar speedup, showing that the ob-
served scaling is inherent to the parallelization and is not limited
by SMTX overheads.

5.3.4 SMTX overheads in each application

Table 5 presents the overhead of recovery from misspeculation and
the fraction of the non-speculative thread’s memory pages that is
versioned during the course of parallel execution. To determine the
recovery overhead uniformly across applications, inputs were pro-
vided that caused the same fraction of iterations to misspeculate
in each application. To determine the number of versioned pages,
page fault statistics were gathered at the beginning and end of par-
allel execution. The two experiments were performed independent
of each other on machine M1. Except for two applications, a mis-
speculation rate of 1% was injected. In 256.bzip2 and crc32, the
misspeculation rate is 3.2% and 1.6% respectively since they iter-
ate fewer number of times. Some entries are marked as “Not Input
Dependent” because in these applications, speculation is used to
overcome memory analysis limitations; in practice, the speculation
will never fail. The recovery overhead may be split into the follow-
ing items:

• SEQ [SEQuential execution]: Time taken to execute the mis-
speculating iteration non-speculatively. This varies from one
application to another, and typically constitutes most of the re-
covery time. It is not shown in the table since it is around 99%.

• FLQ [FLush Queues]: Time taken to flush the inter-process
queues. This depends on the queue size.

• ERM [Enter Recovery Mode]: Time taken by the workers and
the commit unit to enter the recovery mode. This varies from
one application to another because each speculative worker re-
ceives notification of misspeculation only on iteration bound-
aries. Thus, in the worst case, a wait of an entire iteration length
may be necessary.

• RW [Recover Worker]: Time taken to mark the committed
memory pages as COW, remap the page tables of the workers,
and flush the workers’ TLBs.

As the table shows, the cost of recovery is noticeable. To reduce this
cost further, the recovery iteration may itself be executed in a multi-
threaded fashion respecting all dependences. Also, asynchronous
resteer of workers into the recovery mode can completely eliminate
the Enter Recovery Mode overhead. Investigating these possibilities
is left to future work. Finally, the last column shows that there
is often a non-trivial memory overhead that is incurred for the
speedups obtained.

5.3.5 SMTXs vs Single-threaded Transactions

Here, we quantitatively measure the utility of multi-threaded trans-
actional semantics over single-threaded transactional semantics.
The outermost loop in batch process in 197.parser is paral-
lelized with Spec-DOALL using single-threaded transactions, and
also separately with Spec-PS-DSWP using SMTXs. The system
proposed in this paper is used to support both parallelizations. The
results of the parallelizations are shown in Figure 11. The mini-
mum number of threads is 2 and 3 respectively for Spec-DOALL
and Spec-PS-DSWP because of the commit thread and an addi-
tional stage in case of pipelining.
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Figure 11: Spec-DOALL using single-threaded transactions vs
Spec-PS-DSWP using SMTXs on M1

In 197.parser, each transaction updates a global pointer that is
used to scan the input for sentence delimiters. This loop-carried de-
pendence causes frequent misspeculation in Spec-DOALL thereby
serializing the iterations. In contrast, Spec-PS-DSWP creates
SMTXs and synchronizes the scanning by executing it in a sequen-
tial stage and executing the remainder of each iteration in a different
thread, in a schedule similar to that in Figure 6. The Spec-DOALL
implementation may be improved by employing techniques such
as speculative fission [33]. However, this results in sequential ex-
ecution of the dependence recurrences outside the Spec-DOALL
region; Spec-PS-DSWP with SMTX executes them in parallel us-
ing pipelining. Also, the speculative fission technique can incur
excessive buffering overheads, especially in the case of outermost
loops. Memoization [23] cannot help either because the loop is in-
voked only once. A detailed comparison with Spec-DOACROSS
using single-threaded transactions can be found in [22].

6. Related Work

Traditional loop parallelization techniques such as DOALL and
DOACROSS rely on regular structure in the program [3]. These
techniques perform well for scientific programs but are less prof-
itable for general purpose applications, where irregular control
flow and data access patterns are the norm. To mitigate the inher-
ent irregularity, some speculative techniques, loosely classified as
Thread-Level Speculation (TLS), have been developed in recent
years [5, 24, 28, 34]. As shown in Section 2, speculative pipelin-
ing schemes have many benefits over TLS. The execution model
presented in this paper is inspired by the success of similar models
described in [7, 29, 32]. Speculation is often needed to create the



pipeline structure and to extract DOALL-style parallelism in some
stages of the pipeline. However, since transactions (loop iterations)
are split across multiple threads, most existing TLS and transac-
tional memory systems cannot be used. Vachharajani [31] intro-
duced the notion of Multi-threaded Transactions (MTXs), along
with a hardware versioned memory system that can support MTXs.
The SMTX system, presented in this paper, is a software system
that can support MTXs.

Hardware TLS proposals depend on special hardware to buffer
speculative state, detect misspeculation and recover from it. In con-
trast, SMTX is a software-only system that enables speculative
parallelization on commodity multicore hardware. Software TLS
memory systems and software transactional memory systems have
been extensively studied [18, 19, 25, 26]. As previously mentioned,
these support only Speculative DOALL and DOACROSS execu-
tion models. In addition to supporting these models, the proposed
SMTX system can support the speculative pipelining with stage
replication model (Spec-PS-DSWP [8]).

Abadi et al. use page-level memory protection to provide strong
atomicity in an STM [1]. By using page level metadata, their system
discovers conflicts between, and synchronizes, transactional and
non-transactional updates. While their system has multiple (two)
versions of the virtual address space and one version of the physical
pages, the SMTX system has a single version of the virtual address
space and multiple versions of the physical pages.

Oancea et al. [19] present a family of speculation mechanisms
that trade off dependence-tracking precision for improved latency
and memory overheads of speculation. Such lightweight specula-
tive models could be combined with the SMTX system to match an
application’s execution patterns.

Among the more recent software-only speculative loop paral-
lelization strategies, there are three techniques that have all demon-
strated good performance. They are discussed in detail below. The
first two systems are thread-based; the discussion highlights the ad-
vantages (over and above those discussed in [10]) of the process-
based SMTX system over thread-based solutions.

Tian et al. [30] proposed a Copy-Or-Discard (CorD) execu-
tion model for speculative parallelization. They achieve excel-
lent speedup (3.7x to 7.8x on 8 cores) on six benchmarks. CorD
does not support MTXs. CorD’s execution model is such that each
worker thread and the main thread are synchronized on every itera-
tion, putting the cross-thread communication latency on the critical
path. Combined with the sequential execution of the prologue and
epilogue, it is crucial to keep these sequential, non-speculative seg-
ments small in size (execution time). This may necessitate exces-
sive low-confidence speculation that will end up negating any ben-
efits of parallelization. To overcome this, pipelining may be used
to effectively parallelize such loops, with earlier pipeline stages
working on later iterations. By supporting a more generally effec-
tive parallelization strategy in Spec-PS-DSWP, SMTX can claim
wider applicability than CorD. CorD uses a multi-threaded ap-
proach which partitions the virtual address space. This penalizes
every load and store operation by necessitating a table lookup to
determine whether the object being accessed exists in the specu-
lative worker’s memory partition. By maintaining the same virtual
address space across all workers, SMTX is able to guarantee that
the load/store addresses will be valid across all of them.

Mehrara et al. [18] proposed a light-weight transactional mem-
ory system called STMlite that is optimized for loop parallelization.
STMlite does not support MTXs. The proposed SMTX system ar-
chitecture shares some features with STMlite: a centralized transac-
tion commit manager and conflict detection that is decoupled from
the main execution. However, note that the actual conflict detec-
tion mechanism is different: in STMlite, each transaction computes
read and write signatures that are compared at commit time. STM-

lite allows transactions to compete for commit ordering; in con-
trast, due to its focus on loop parallelization, the SMTX system
currently requires transactions to have a total ordering. The system
can be easily modified in the future to loosen this restriction. As in
other thread-based systems that implement lazy versioning, loads in
STMlite will potentially have to scan the store queue to get the last
write to that location. This significantly penalizes loads (STMlite
uses caching of recent stores to improve the situation). By virtue
of using Memory Versioning, loads are not penalized in the SMTX
system: stores incur a page-fault penalty that is amortized over all
the writes to that page.

Ding et al. [10] proposed a software system to support Behav-
ior Oriented Parallelization (BOP). The BOP system does not sup-
port MTXs. The BOP system (and related systems such as those in
[4, 14]), like the SMTX system, uses processes for data protection
during speculative execution. However, many design choices dif-
ferentiate the SMTX system from these other systems. To support
MTXs, SMTX uses store-forwarding so that subTXs of an MTX
enter the same memory version. To protect shared data and de-
tect violations, the BOP system restricts page permissions and in-
stalls custom page-fault handlers to intercept reads and writes and
records the type of access of a page in each process. This access
map is used at commit time to detect any dependence violation,
and is used to update committed memory in a rolling fashion: this
puts inter-core communication latency on the critical path. In the
SMTX system, a separate commit thread owns committed mem-
ory allowing an acyclic communication pattern. Note that in spite
of this centralization, the commit and try-commit algorithms are
parallelizable. In BOP, access violations are tracked at the page
granularity resulting in the false-sharing problem. To alleviate this,
each global variable is placed on a separate page in the BOP sys-
tem resulting in memory overhead. The SMTX system does not
suffer from the false sharing problem. In BOP, some variables are
checked using a value-based checking algorithm: the values of the
variables at the beginning and end of each task are compared to see
whether they are the same. Note that the value must be reset on at
least a few consecutive PPR (Possibly Parallel Region) instances.
This is a restricted form of the general flow-dependence detection
algorithm used in the SMTX system; for speculation to succeed,
the value needs to be reset only before the speculative load (which
need not be in the next transaction) reads it. Also, the checking is
done off the critical path by a separate thread using an algorithm
that is parallelizable.

7. Summary

This paper introduced the SMTX system: a software runtime sys-
tem that supports Multi-Threaded Transactions to enable specula-
tive parallelizations of general-purpose applications. By maintain-
ing the same virtual address space with different mappings to phys-
ical memory, the workers are able to operate on their private mem-
ory without much performance penalty, with physical pages be-
ing privatized on-demand using the Copy-On-Write mechanism. A
novel recovery scheme that remaps the virtual address space of the
workers to the non-speculative physical pages, and a value-based
conflict detection scheme are presented. This work extracts up to
21.71x speedup on today’s 24-core multicore machine.
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